

P = m

Pre-Leaving Certificate Examination, 2018

Mathematics Higher Level

Marking Scheme

Paper 1	Pg. 2
Paper 2	Pg. 42

ExamCentre, Units 3/4, Fonthill Business Park, Fonthill Road, Dublin 22, D22 V348.

Tel: (01) 616 62 62 Fax: (01) 616 62 63 www.debexams.ie

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level – Paper 1 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.

These scales and the marks that they generate are summarised in the following table:

Scale label	Α	В	С	D
No. of categories	2	3	4	5
5 mark scale		0, 2, 5	0, 2, 4, 5	0, 2, 3, 4, 5
10 mark scale			0, 4, 7, 10	0, 4, 6, 8, 10
15 mark scale				0, 5, 9, 12, 15

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving ① incorrect rounding, ② omission of units, ③ a misreading that does not oversimplify the work or ③ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale **10C*** indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- The * penalty is not applied for the omission of units in currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.

Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

<u>Secti</u>	on A				Sect	ion B			
Q.1	(a) (b)		15D (0, 5, 9, 12, 15) 10D (0, 4, 6, 8, 10)		Q.7	(a)	(i) (ii)	5C (0, 2, 4, 5) 5C* (0, 2, 4, 5)	
				25			(iii)	$10D^* (0, 4, 6, 8, 10)$	
						(b)	(IV) (i)	5C(0, 2, 4, 5) 5B(0, 2, 5)	
						(0)	(i) (ii)	5B (0, 2, 5) 5B (0, 2, 5)	
Q.2	(a)	(i)	10C (0, 4, 7, 10)				(iii)	$10D^*(0, 4, 6, 8, 10)$	
c		(ii)	10D (0, 4, 6, 8, 10)					· · · · · /	45
	(b)		5C (0, 2, 4, 5)						
				25					
					0.8	(a)	(i)	5C (0, 2, 4, 5)	
					2	()	(ii)	10D (0, 4, 6, 8, 10)	
Q.3	(a)		10D (0, 4, 6, 8, 10)				(iii)	10D* (0, 4, 6, 8, 10)	
	(b)	(i)	10D (0, 4, 6, 8, 10)				(iv)	5C* (0, 2, 4, 5)	
		(ii)	5C (0, 2, 4, 5)			(b)	(i)	10D* (0, 4, 6, 8, 10)	
				25			(ii)	10C (0, 4, 7, 10)	
							(iii)	5D (0, 2, 3, 4, 5)	55
									22
Q.4	(a)	(i)	5C (0, 2, 4, 5)						
		(ii)	10D* (0, 4, 6, 8, 10)						
	(b)		10D* (0, 4, 6, 8, 10)		Q.9	(a)	(i)	5B (0, 2, 5)	
				25			(ii)	5C (0, 2, 4, 5)	
							(iii)	5C (0, 2, 4, 5)	
							(iv)	5C (0, 2, 4, 5)	
0.5	(a)		10D(0, 4, 6, 9, 10)			(b)	(1)	5C(0, 2, 4, 5)	
Q.5	(a) (b)		10D(0, 4, 6, 8, 10)				(II) (:::)	5U(0, 2, 4, 5)	
	(D) (D)		3C(0, 2, 4, 3) 10D(0, 4, 6, 8, 10)				(III) (iv)	10D(0, 4, 0, 8, 10) 5C(0, 2, 4, 5)	
	(t)		10D(0, 4, 0, 0, 10)	25			(\mathbf{v})	5C(0, 2, 4, 5) 5C(0, 2, 4, 5)	
				43			(•)	50 (0, 2, 4, 5)	50
0.6	(a)	(i)	10C (0, 4, 7, 10)						
C	()	(ii)	5C (0, 2, 4, 5)						
	(b)	~ /	10D (0, 4, 6, 8, 10)						
				25					

Current Marking Scheme

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

Copyright

All rights reserved. This marking scheme and corresponding papers(s) are protected by Irish (EU) copyright law. Reproduction and distribution of these materials or any portion thereof without the written permission of the publisher is prohibited except for the immediate use within a classroom.

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level – Paper 1 Marking Scheme (300 marks)

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer **all nine** questions.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Section A

Concepts and Skills

Answer **all six** questions from this section.

Question 1

1(a)	Solve the simultaneous	equations:			
		$2x + \frac{y}{2} - 2z$	=	8 (×2)	
		$\frac{x}{2} + \frac{y}{3} + \frac{5z}{9}$	=	0 (×18)	
		$\frac{x}{6} - \frac{y}{4} + \frac{z}{12}$	=	$\frac{7}{8}$ (× 24)	
	⇒	4x + y - 4z 9x + 6y + 10z 4x - 6y + 2z	= = =	16 0 21	① ② ③
	2 3	Equating 2 and 3 9x + 6y + 10z 4x - 6y + 2z 13x + 12z): = = =	0 21 21	④
	() (3)	Equating \bigcirc and \bigcirc 4x + y - 4z 4x - 6y + 2z): = =	16 (× 6) 21 (× 1)	
	⇒	24x + 6y - 24z $4x - 6y + 2z$ $28x - 22z$	= = =	96 <u>21</u> 117	(5)

150 marks

(25 marks)

(15D)

1(a) (cont'd.)

	Equating ④ and ⑤):		
4	13x + 12z	=	21 (×11)	
S	28x - 22z	=	117 (× 6)	
\Rightarrow	143x + 132z	=	231	
	168x - 132z	=	702	
	311 <i>x</i>	=	933	
\Rightarrow	X	=	3	
	Substituting into	D:		
4	13x + 12z	=	21	
\Rightarrow	13(3) + 12z	=	21	
\Rightarrow	12z	=	21 - 39	
		=	-18	
\Rightarrow	Z.	=	$-\frac{3}{2}$	
	Substituting into (D:		
0	4x + y - 4z	=	16	
\Rightarrow	$4(3) + y - 4(-\frac{3}{2})$	=	16	
\Rightarrow	y –	=	16 - 12 -	6
		=	-2	
Scale 15D (0, 5, 9, 12, 15)	Low partial credi	t: (5 m	narks) –	Any relevant fractions in at
	Mid partial credi	t: (9 m	arks) –	Finds correctly

	2		
2, 15)	Low partial credit: (5 marks)	-	Any relevant first step, <i>e.g.</i> eliminates fractions in at least one equation.
	Mid partial credit: (9 marks)	_	Finds correctly one equation with two variables, <i>e.g.</i> $13x + 12z = 21$.
	High partial credit: (12 marks)	_	Finds correctly two equations with the <u>same</u> two variables, <i>e.g.</i> $13x + 12z = 21$ and $28x - 22z = 117$, but fails to finish <u>or</u> finishes incorrectly. Finds one variable (<i>x</i> , <i>y</i> <u>or</u> <i>z</i>) only.

(10D)

1(b) If $(x + a)^2$ is a factor of $10x^3 + 21ax^2 + 20abx + 25a$, where *a* and *b* are non-zero constants, find the possible values of *a* and *b*.

0		$(x+a)^2$	=	$x^2 + 2ax + a^2$			
		$x^{2} + 2ax + a^{2}$ $) 10.$ -10.	$\frac{x + a}{x^3 + 21a}$ $\frac{x^3 - 20a}{a}$	$\frac{a}{ax^{2} + 20abx}$ $\frac{ax^{2} - 10a^{2}x}{ax^{2} + x(20ab - 10a^{2})}$ $\frac{ax^{2} - 2a^{2}x}{ax^{2} - 2a^{2}x}$	$+25a$ $+25a$ $-a^{3}$ 0		
		as $(x + a)^2$ is a factor	$r, \Rightarrow re$	emainder = 0			
	\Rightarrow	a_2^3	=	25 <i>a</i>			
	\Rightarrow	a^2	=	25			
	\Rightarrow	a	=	5 <u>or</u> –5			
	also	$2a^2$	=	$20ab - 10a^2$			
	\Rightarrow	2a	=	20b - 10a			
	\Rightarrow	200	=	$\frac{12a}{3}$			
	\Rightarrow	b	=	$\frac{3}{5}a$			
				3			3
	\Rightarrow	b	=	$\frac{-}{5}^{(5)}$	b	=	$\frac{-(-5)}{5}$
			=	3		=	-3
or							
0	$\stackrel{\uparrow}{\Rightarrow}$	$(x + a)^{2}$ (x ² + 2ax + a ²)(10x 10x ³ + 20ax ² + 10a	$(+c)^{2}x + cx$	$=$ $=$ $^{2} + 2acx + a^{2}c =$	$x^{2} + 2ax + a$ $10x^{3} + 21ax$ $10x^{3} + 21ax$	a^2 $c^2 + 20a$ $c^2 + 20a$	bx + 25a $bx + 25a$
		Comparing terms:					
x^2 :		20a + c	=	21 <i>a</i>			
	\Rightarrow	21a - 20a	=	С			
	\Rightarrow	а	=	С			
<i>x</i> :		$10a^{2} + 2ac$	=	20ab			
	\Rightarrow	$10a^2 + 2a(a)$	=	20ab			
	\Rightarrow	10a + 2a	=	20 <i>b</i>			
	\Rightarrow	20 <i>b</i>	=	$\frac{12a}{2}$			
	\Rightarrow	b	=	$\frac{5}{5}a$			
const	ants:	a^2c	=	25 <i>a</i>			
	\Rightarrow	$a^2(a)$	=	25 <i>a</i>			
	\Rightarrow	a^2	=	25			
	\Rightarrow	a	=	5 <u>or</u> -5			2
	\Rightarrow	b	=	$\frac{3}{5}(5)$	b	=	$\frac{3}{5}(-5)$
			=	3		=	-3

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Any relevant correct step, <i>e.g.</i> some correct division in dividing $x^2 + 2ax + a^2$ into equation <u>or</u> some correct multiplication of $(x^2 + 2ax + a^2)(10x + c)$. Writes down $2x - 1$ is a factor of equation and attempts to divide.
Mid partial credit: (6 marks)	_	Fully correct division <u>or</u> multiplication, but fails to progress.
High partial credit: (8 marks)	_	Finds $a = \pm 5$ or $b = \frac{3}{5}a$, but fails to find
		a and b (both values) [Method \bullet].
	_	Finds $a = c \operatorname{and} b = \frac{3}{5}a$, but fails to find
		a and b (both values) [Method $\boldsymbol{2}$].

(25 marks)

2(a)	a) $z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ is a complex number, where $i^2 = -1$.								
	(i) Write z in pole	ar form	1.						(10C)
			$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$	=	$r(\cos\theta + i\sin\theta)$				
	0		r	=	z				
				=	$\sqrt{(-\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2}$				
				=	$\sqrt{\frac{1}{4} + \frac{3}{4}}$				
				=	$\sqrt{1}$				
				=	$\sqrt{3}$			Im	
	0		$\tan \alpha$	=	$\frac{1}{2}$		θ		
					$\frac{1}{2}$			Ke	
				=	$\sqrt{3}$		$\frac{\sqrt{3}}{2}$		
		\Rightarrow	α	=	$\tan^{-1}\sqrt{3}$		<u></u>		
				=	$\frac{\pi}{3}$ or 60°		2		
		\Rightarrow	θ	=	$\pi + \frac{\pi}{3}$	or	heta	=	$180^\circ + 60^\circ$
				=	$\frac{4\pi}{2}$			=	240°
			$1 \sqrt{3}$		3				
			$-\frac{1}{2} - \frac{1}{2}i$	=	$r(\cos\theta + i\sin\theta)$				
				=	$1(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3})$)			
				=	$\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$	<u>or</u> ($\cos 240^\circ + i$	sin 240°	
						<u>or</u>	$\cos\left(-\frac{2\pi}{2}\right) +$	$i\sin\left(-\frac{2\pi}{2}\right)$	1
						<u>or</u> ($\cos\left(-120^\circ\right)$	$+ i \sin(-12)$	0°)
	Scale 10C (0, 4, 7, 10	0)	Low partial	credit:	(4 marks) –	Any	relevant fir	st step, <i>e.g.</i>	writes down
						num	ber in polar	form.	a complex
					_	Find Plot	is correct <i>r</i> <u>c</u> s <i>z</i> correctly	$\frac{\alpha}{\alpha}$ (reference on an Arg	nce angle). and diagram.
			High partia	l credit:	(7 marks) –	Find	ls correct va	lues for bo	th $r \operatorname{and} \theta$,
					_	but f	fails to finisl	h <u>or</u> finishe lues for bo	incorrectly. th r and α
					_	(refe	erence angle), but comp	plex number
						in w	rong quadra	nt and finis	shes correctly.

(10D)

2(a) (cont'd.)

(ii) Hence, find the four complex numbers w such that $w^4 = z$. Give your answers in rectangular form.

> w^4 = z $= \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$ $= \cos(\frac{4\pi}{3} + 2n\pi) + i\sin(\frac{4\pi}{3} + 2n\pi)$ $= [\cos(\frac{4\pi}{3} + 2n\pi) + i\sin(\frac{4\pi}{3} + 2n\pi)]^{\frac{1}{4}}$ w \Rightarrow $= \cos(\frac{4\pi}{12} + \frac{2n\pi}{4}) + i\sin(\frac{4\pi}{12} + \frac{2n\pi}{4})$ $= \cos\left(\frac{\pi}{3} + \frac{n\pi}{2}\right) + i\sin\left(\frac{\pi}{3} + \frac{n\pi}{2}\right)$ For n = 0 $= \cos(\frac{\pi}{3} + \frac{(0)\pi}{2}) + i\sin(\frac{\pi}{3} + \frac{(0)\pi}{2})$ W_1 = $\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$ $= \frac{1}{2} + \frac{\sqrt{3}}{2}i$ For n = 1 $= \cos{(\frac{\pi}{3} + \frac{(1)\pi}{2})} + i\sin{(\frac{\pi}{3} + \frac{(1)\pi}{2})}$ W_2 = $\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$ = $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ For n = 2 $= \cos(\frac{\pi}{3} + \frac{(2)\pi}{2}) + i\sin(\frac{\pi}{3} + \frac{(2)\pi}{2})$ W_3 = $\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$ $= -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ For n = 3 $= \cos(\frac{\pi}{3} + \frac{(3)\pi}{2}) + i\sin(\frac{\pi}{3} + \frac{(3)\pi}{2})$ w_4 $= \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}$ = $\frac{\sqrt{3}}{2} - \frac{1}{2}i$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $w = \sqrt[4]{z} \text{ or } z^{\frac{1}{4}} \text{ or } w^4 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$
	_	or similar. Writes down z in general polar form, <i>i.e.</i> $z = \cos(\frac{4\pi}{3} + 2n\pi) + i\sin(\frac{4\pi}{3} + 2n\pi).$

2(a) (ii)	(cont'	(b
2(a) (II)	(Cont	u.)

Mid partial credit: (6 marks)	_	De Moivre's Theorem applied correctly
		with $n = \frac{1}{4}$, but fails to progress,
		e.g. $w = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$ and stops.
	—	Finds correct general term for w , but fails to substitute $n = 0, 1, 2, 3$ into expression,
		<i>i.e.</i> $w = \cos(\frac{\pi}{3} + \frac{n\pi}{2}) + i\sin(\frac{\pi}{3} + \frac{n\pi}{2})$
		and stops or continues incorrectly.
High partial credit: (8 marks)	_	Finds first root, $w_1 = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \underline{\text{or}}$
		$\frac{1}{2} + \frac{\sqrt{3}}{2}i$ correctly from general polar
		form, but fails to find <u>or</u> finds incorrect other roots
	_	Finds all roots in polar form, but fails to convert <u>or</u> converts incorrectly to
		rectangular form.
	_	Substantive work towards finding all four roots with one error/omission.

2(b) Use De Moivre's Theorem to prove that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$.

	Consider $(\cos\theta + i\sin\theta)^3$ $(\cos\theta + i\sin\theta)^3$	$(\sin \theta)^3 =$	$\cos 3\theta + i \sin \theta$	30	De Moivre's Theorem	
	Expanding $(\cos\theta + i\sin\theta)^3$	$i\sin\theta$ ³ = =	$\cos^3\theta + 3(\cos^3\theta - 3\cos^3\theta)$	$s^2\theta$) $(i\sin\theta) + s\theta\sin^2\theta + i[3$	$3(\cos\theta)(i\sin\theta)^2 + (i\sin\theta)^3$ $3\cos^2\theta\sin\theta - \sin^3\theta$]	
	Equating the imagins $\sin 3\theta$	nary par = = = =	ts $3\cos^2\theta\sin\theta$ - $3(1-\sin^2\theta)si$ $3\sin\theta$ - $3\sin^2\theta$ $3\sin\theta$ - $4\sin^2\theta$	$-\sin^{3}\theta$ $\sin\theta - \sin^{3}\theta$ $^{3}\theta - \sin^{3}\theta$ $^{3}\theta$		
Scale 5C (0, 2, 4, 5)	Low partial credit	: (2 mar	ks) – –	Any relevant ($\cos\theta + i\sin\theta$) and stops. Expands (co) and stops.	t first step, <i>e.g.</i> writes down θ) ³ = cos 3 θ + <i>i</i> sin 3 θ s θ + <i>i</i> sin θ) ³ correctly	
	High partial credit	:: (4 mai	rks) – –	Finds <u>both</u> excorrectly and but fails to find the state of the state	kpansions for $(\cos\theta + i\sin\theta)$ d equates imaginary parts, inish <u>or</u> finishes incorrectly. work towards finding sin 3 θ ,) ³

but with one error/omission.

(5C)

(10D)

3 (a)	Solve the equation	$3^{2x+2} - 28(3^x) + 3 = 0.$	[Hint: Let $v = 3^x$.]
U (u)	borve the equation	20(3)+3=0.	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $

	Let $y = 3^x$						
\Rightarrow	3^{2x+2}	=	3^{x+x+2}				
		=	$(3^{*})(3^{*})(3^{-})$				
		_	(y)(y)(y) $9v^2$				
	2^{2x+2} 28(2x) + 2	_	<i>,</i>				
\rightarrow	5 - 28(5) + 5 $9y^2 - 28y + 3$	_	0				
\rightarrow	(9y - 1)(y - 3)	_	0				
, 	0 1	_	0			_	0
\rightarrow	9y - 1	=	0	\rightarrow	y-5	=	0
	<i>9y</i>	-	1	\rightarrow	У	_	5
\Rightarrow	У	=	9				
<u> </u>		_	2^{x}	_		_	2^x
\rightarrow	У	_	1	\rightarrow	У	_	3
		=	$\overline{9}$	\Rightarrow	3 ^{<i>x</i>}	=	3
_	2^{X}	_	1			=	3 ¹
\rightarrow	3	=	9	\Rightarrow	x	=	1
		=	3 ⁻²				
\Rightarrow	x	=	-2				
Scale 10D (0, 4, 6, 8, 10)	Low partial credit:	(4 mar	ks) –	Any relevan	t first step. e.g	e writes	down
	20 % partial creation	($3^{2x+2} = (3^{2x})^{2x+2}$	$(3^2), (3^x)(3^x)$	(3^2) or s	similar.
			_	Finds 3^{2x+2}	$=9y^2$ correct	ly and st	tops
				or continues	s incorrectly.		
	Mid partial credit:	(6 marl	cs) –	Substitutes y	correctly into	o quadra	tic eqn.
				and finds co	prrect factors	of equati	ion
				[ans. (9y - 1)]	1(y-3) = 0		
	High partial credit: (8 marks)		·ks) –	Finds two c	orrect values	for y, bu	ıt fails
				to find both	correspondin	g values	s for x
				or finds inco	orrect values	tor x .	finda
			_	correct corr	esponding val	or y and lue for y	nnas
					coponding va		•

3(b)	(i)	Prove by induction	that the sum of the squares of the final $n(n+1)(2n+1)$	irst <i>n</i> na	atural numbers,	
		$1^2 + 2^2 + 3^2 + \ldots + n$	n^2 , is $\frac{n(n+1)(2n+1)}{6}$.			(10D)
		0	P(<i>n</i>):			
		-	$1^2 + 2^2 + 3^2 + \ldots + n^2$	=	$\frac{n(n+1)(2n+1)}{6}$	
		0	P(1):			
			Test hypothesis for $n = 1$			
			1^{2}	=	$\frac{1(1+1)(2(1)+1)}{6}$	
				_	1(2)(3)	
				_	6	
				=	$\frac{0}{6}$	
				=	1	
		\Rightarrow	True for $n = 1$			
		€	P (<i>k</i>):			
			Assume hypothesis for $n = k$ is true	ue	$L(k + 1)(2k \pm 1)$	
		\Rightarrow	$1^2 + 2^2 + 3^2 + \ldots + k^2$	=	$\frac{k(k+1)(2k+1)}{6}$	
		4	P(k + 1):			
			Test hypothesis for $n = k + 1$ To Prove:			
			$1^{2} + 2^{2} + 3^{2} + \ldots + k^{2} + (k+1)^{2}$	=	$\frac{(k+1)(k+2)(2k+3)}{6}$	
			<u>Proof:</u> Consider LHS:			
			$1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2$	=	$\frac{k(k+1)(2k+1)}{6} + (k+1)^2$	
				=	$\frac{k(k+1)(2k+1) + 6(k+1)^2}{k(k+1)^2}$	
				=	$\frac{6}{(k+1)[k(2k+1)+6(k+1)]}$	
				=	$\frac{(k+1)[2k^2+7k+6]}{(k+1)[2k^2+7k+6]}$	
				_	(k+1)(k+2)(2k+3)	
				_	6	
		\Rightarrow	True for $n = k + 1$	=	KHS	
			So, $P(k + 1)$ is true whenever $P(k$ Since $P(1)$ is true, then by inducting	t) is true ion P(<i>n</i>)	e.) is true for any positive integer <i>n</i> / a	ll $n \in \mathbb{N}$.
	Scale	10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	-	Any relevant first step, <i>e.g.</i> writes correctly P(1) step <u>and stops</u> .	down
			Mid partial credit: (6 marks)	_	Writes down correctly $P(1)$ and $P(0)$ or $P(k + 1)$ steps.	(k)
			High partial credit: (8 marks)	_	Writes down correctly $P(1)$ step and uses $P(k)$ to prove $P(k + 1)$ step foile to finish an finish and uses $P(k)$ to prove $P(k + 1)$ step for the finish of finish and $P(k)$ and $P(k$	$\frac{\text{nd}}{\text{ep, but}} \mathbf{P}(k)$
				_	Writes down all steps correctly, bu conclusion <u>or</u> incorrect conclusion	ut no 1 given.

3(b) (cont'd.)

(**ii**) Hence, or otherwise, evaluate the sum of the squares of all the natural numbers from 30 to 60, inclusive.

from 30 to 60, inclu	usive.		(5 C)
	$1^2 + 2^2 + 3^2 + \ldots + n^2$	=	$\frac{n(n+1)(2n+1)}{6}$
\Rightarrow	$30^2 + 31^2 + 33^2 + \ldots + 60^2$		$\frac{S_{60} - S_{29}}{6} = \frac{60(60 + 1)(120 + 1)}{6} = \frac{29(29 + 1)(58 + 1)}{6}$ $= \frac{60(61)(121)}{6} = \frac{29(30)(59)}{6}$ $= \frac{442,860}{6} = \frac{51,330}{6}$ $= \frac{73,810 - 8,555}{65,255}$
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down 'sum = $S_{60} - S_{29}$ ' or similar. [Do not accept 'sum = $S_{60} - S_{30}$ '.] Correct substitution into formula from part (b)(i) using $n = 29$, 30 or 60.
	High partial credit: (4 marks)	_	Correct substitution into formula using $n = 29$ and 60, but fails to evaluate or evaluates incorrectly. Incorrect substitution into formula using $n = 30$, but otherwise finishes correctly [ans. 73,810 - 9,455 = 64,355].

(5C)

Dan and Kate plan to buy a house which costs 250,000. In order to get a mortgage on the property, the couple need to save a deposit of 10% of the purchase price. They open a savings account in their local Credit Union which offers an annual equivalent rate (AER) of 3.5%.

4(a) (i) Show that the rate of interest, compounded monthly, which is equivalent to an AER of 3.5% is 0.287%, correct to three decimal places.

	r i	=	annual equivalent rate (AER) monthly percentage rate
	F	=	$P(1+r)$ $P(1+i)^{t}$
\Rightarrow	1(1 + <i>r</i>)	=	$1(1+i)^{t}$
\Rightarrow	1(1 + 0.035)	=	$1(1+i)^{12}$
\Rightarrow	1.035	=	$(1+i)^{12}$
\Rightarrow	1+i	=	$(1.035)^{\frac{1}{12}}$
\Rightarrow	i	=	$1 \cdot 002870898 1$
		=	0.002870898
\Rightarrow	r	=	0.2870898%
		≅	0.287%

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula $F = P(1 + i)^t$ and stops. Some correct substitution into correct formula (not stated) and stops or continues. Correct substitution into incorrect formula and stops or continues.
High partial credit: (4 marks)	_	Fully correct substitution into formula, <i>i.e.</i> $1(1 + 0.035) = 1(1 + i)^{12}$ or equivalent, but fails to find or finds incorrect rate. Final answer not given as a percentage, <i>i.e.</i> $r = 0.002870898$

(10D*)

4(a) (cont'd.)

(ii) Dan and Kate decide to put €00 in the savings account at the beginning of each month. How long will it take them to save up the deposit for the house? Give your answer in months, correct to the nearest month.

Deposit required	=	10% of 250,000
	=	$250,000 imes rac{10}{100}$
	=	€25,000

Value of savings instalments after n months

F

$P(1+i)^{t}$	
$500(1+0.00287)^n$	
$500(1.00287)^n$	

Month	Instalment (€)	Value of instalment after <i>n</i> months
1	500	$500(1.00287)^n$
2	500	$500(1 \cdot 00287)^{n-1}$
3	500	$500(1 \cdot 00287)^{n-2}$
t	500	$500(1.00287)^{1}$

 \Rightarrow Geometric series with $a = 500(1 \cdot 00287)$ and $r = 1 \cdot 00287$

	S_n	=	$\frac{a(1-r^n)}{1-r}$
\Rightarrow	25,000	=	$\frac{500(1\cdot00287)(1-1\cdot00287^n)}{1-1\cdot00287}$
		=	$-174,716 \cdot 027874(1 - 1 \cdot 00287^{n})$
		=	$174,716 \cdot 027874(1 \cdot 00287^{n} - 1)$
\Rightarrow	$1 \cdot 00287^{n} - 1$	=	25,000 174,716·027874
		=	0.143089333
\Rightarrow	1.00287^{n}	=	0.143089333+1
		=	1.143089333
\Rightarrow	n	=	$\log_{1.00287}(1.143089333)$
		=	46.664235
		≅	47 months

 \Rightarrow it will take Dan and Kate 47 months to save up the deposit

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	-	Any relevant first step, <i>e.g.</i> reference to value of first instalment <u>or</u> subsequent instalments after <i>n</i> months = $500(1 \cdot 00287)^n$, where $1 < n \le 60$. Finds deposit required [ans. 25,000]. Recognises value of savings instalments after <i>n</i> months as a sum of a GP with some correct substitution into S_n formula.
	Mid partial credit: (6 marks)	_	Fully correct substitution into S_n formula, but fails to progress.
	High partial credit: (8 marks)	_	Substantive work towards finding value of n with one error/omission or equation in n (n no longer an index).

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc*. of question.

* No deduction applied for the omission of <u>or</u> incorrect use of units ('months').

(10D*)

4(b) After saving for three years, Dan and Kate find the perfect house. They decide to borrow the remainder of the **deposit** at a monthly interest rate of 0.425%, fixed for the term of the loan. The loan is to be repaid in equal monthly repayments over five years and the first repayment is due one month after the loan is issued. Calculate the amount of each monthly repayment, correct to the nearest cent.

0	Value of savings instalments after 36 months			t <u>hs</u>		
		#instalmer	nts = =	3 × 12 36		
		F	= = =	$P(1+i)^{t} 500(1+0.002) 500(1.00287)^{t}$	87) ⁿ	
		Month	Instalment (€)	Value o after 3	f instalment 36 months	
		1	500	500(1.	$00287)^{36}$	
		2	500	500(1-	$(00287)^{35}$	
		3	500	500(1.	00287) ³⁴	
		36	500	500(1.	00287) ¹	
	\Rightarrow	Geometric	series with $n = 3$	6, $a = 500(1 \cdot 00)$ $a(1 - r^n)$	()287) and $r = 1.00$)287
		S_n	=	$\frac{1}{1-r}$		
	\Rightarrow	<i>S</i> ₃₆	=	$\frac{500(1.00287)(}{1-1.00287)(}$	$\frac{(1-1.00287^{36})}{00287}$	
			= ≅	18,988 • 50602 €18,988 • 51	1	
0		Remainder	of deposit:			
		Remainder	=	25,000 – 18,98 €6,011·49	88.51	
₿		Monthly re	payments:			
	1	Sum of geo	metric series:			
		# repaymer	nts = =	12 × 5 60		
		F	=	$P(1+i)^{t}$		
	\Rightarrow	Р	=	$\frac{F}{\left(1+i\right)^{t}}$		
		i	=	0.00425		
		X	=	fixed monthly	repayment	
	\Rightarrow	Р	=	$\frac{X}{(1+0.00425)^t}$	Ŧ	
			=	$\frac{X}{1 \cdot 00425^t}$		
		Month	Present of future rep	value ayment (P)	Future repayment (F)	
			X			

Month	Present value	Future
WOIIIII	of future repayment (P)	repayment (F)
1	$\frac{X}{1.00425^1}$	X
2	$\frac{X}{1.00425^2}$	X
		•••
60	$\frac{X}{1.00425^{60}}$	X

(cont'd.)

4(b)

(*********)			
\Rightarrow	Geometric series	with $n = 6$	50, $a = \frac{X}{1.00425}$ and $r = \frac{1}{1.00425}$
	S_n	=	$\frac{a(1-r^n)}{1-r}$
\Rightarrow	S_{60}	=	$\frac{\frac{X}{1\cdot00425} \left(1 - \frac{1}{1\cdot00425^{60}}\right)}{1 - \frac{1}{1\cdot00425}}$
		=	$\frac{X(0.223713)}{0.004222}$
		_	0.004232 52 962274 V
		_	52·802274 <i>x</i> 6.011.49
	50 0 6005 L V	—	
\Rightarrow	52·862274X	=	6,011.49
\Rightarrow	X	=	113.719851
		Ĩ	€113-72
or			
\bigcirc	Amortisation:		
	A	=	$Prac{i(1+i)^t}{(1+i)^t-1}$
	t	=	12×5
		=	60 months
	i	=	0.00425
	Р	=	6,011.49
	X	=	fixed monthly repayment
\Rightarrow	X	=	$\frac{6,011\cdot49(0\cdot00425)(1+0\cdot00425)^{60}}{(1+0\cdot00425)^{60}-1}$
		=	$\frac{6,011\cdot49(0\cdot00425)(1\cdot00425)^{60}}{(1\cdot00425)^{60}-1}$
		_	113,710851
		~	£113.72
		=	T4 1 <i>3</i> .7 <i>2</i>
Scale 10D* (0, 4, 6, 8, 1	0) Low partial cred	lit: (4 mar	 - Any relevant first step, e.g # instalments [ans. 3 × 12 # repayments [ans. 5 × 12 - Recognises value of saving after 36 months as a sum of

4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> finds correct # instalments [ans. $3 \times 12 = 36$] and/or # repayments [ans. $5 \times 12 = 60$]. Recognises value of savings instalments after 36 months as a sum of a GP with some correct substitution into S_n formula.
	Mid partial credit: (6 marks)	_	Finds correct value of savings instalments after 36 months (S_{36}) [ans. $\[miscup{delta}$ 8,988.51] <u>or</u> remainder of deposit [$\[miscup{delta}$,011.49]. Recognises sum of future repayments as a sum of a GP with some correct substitution into S_n formula. Writes down correct relevant formula for amortisation with some correct substitution into formula.
	High partial credit: (8 marks)	_	Fully correct substitution into $S_n \underline{\text{or}}$ amortisation formula, but fails to finish <u>or</u> finishes incorrectly.

* Deduct 1 mark off correct answer only if not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

* No deduction applied for the omission of <u>or</u> incorrect use of units in questions involving currency.

The diagram shows part of the graph of a cubic function f(x), where $x \in \mathbb{R}$.

5(a) Find the equation of f(x).

(10D)

	From the graph, the $x = -0.5$, $x = 1$ and	x = 3	of $f(x)$ are
⇒	f(x)	= = =	k(x + 0.5)(x - 1)(x - 3) $k(x + 0.5)(x^{2} - 4x + 3)$ $k(x^{3} - 4x^{2} + 3x + 0.5x^{2} - 2x + 1.5)$ $k(x^{3} - 3.5x^{2} + x + 1.5)$
	From the graph, $f(0)$	(0) = 3	
\Rightarrow	f(x)	=	$k(x^3 - 3 \cdot 5x^2 + x + 1 \cdot 5)$
\Rightarrow	f(0)	=	$k(0^3 - 3 \cdot 5(0)^2 + 0 + 1 \cdot 5)$
		=	3
\Rightarrow	$k(1\cdot 5)$	=	3
\Rightarrow	k	=	2
⇒	f(x)	=	$2(x^{3} - 3 \cdot 5x^{2} + x + 1 \cdot 5)$ $2x^{3} - 7x^{2} + 2x + 3$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down all three correct roots of $f(x)$, <i>i.e.</i> $x = -0.5$, $x = 1$ and $x = 3$ and stops. Finds at least two correct factors of $f(x)$, <i>i.e.</i> $x + 0.5$ or $2x + 1$, $x - 1$ and $x - 3$. Uses graph to find $f(0) = 3$.
Mid partial credit: (6 marks)	_	Finds $f(x) = k(x + 0.5)(x - 1)(x - 3)$, but fails to progress.
High partial credit: (8 marks)	_	Finds $f(x) = k(x^3 - 3 \cdot 5x^2 + x + 1 \cdot 5)$, but fails to find correct value of k. Finds $f(x) = 2x^3 - 7x^2 + 2x + 3$ without reference to $f(0) = 3$.

5(b) On the diagram above, draw the graph of the function g(x) = 2 - f(x), where $x \in \mathbb{R}$.

(5C)

(10D)

5(c) Use integration to find the average value of g(x) over the interval $0 \le x \le 3, x \in \mathbb{R}$.

> Average value of g(x) in the interval [a, b] $\frac{1}{b-a}\int_{a}^{b}g(x)\,dx$

=

= = =

g(x)

 \Rightarrow

= Average value of
$$g(x)$$

$$= \frac{1}{3-0} \int_{0}^{3} (-2x^{3} + 7x^{2} - 2x - 1) dx$$

$$= \frac{1}{3} [-2\frac{x^{4}}{4} + 7\frac{x^{3}}{3} - 2\frac{x^{2}}{2} - x] \Big|_{0}^{3}$$

$$= \frac{1}{3} [-\frac{2}{4}(3)^{4} + \frac{7}{3}(3)^{3} - \frac{2}{2}(3)^{2} - 3]$$

$$= \frac{1}{3} [-\frac{81}{2} + 63 - 9 - 3]$$

$$= \frac{1}{3} [-40 \cdot 5 + 51]$$

$$= \frac{1}{3} [10 \cdot 5]$$

$$= 3 \cdot 5$$

2-f(x)2-[2x³-7x²+2x+3]-2x³+7x²-2x+2-3-2x³+7x²-2x-1

** Accept students' answers for f(x) from part (a) if not oversimplified.

)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down relevant formula for the average value of a function. Formulates integral (with correct limits), <i>i.e.</i> $\frac{1}{3}\int_{0}^{3} (-2x^3 + 7x^2 - 2x - 1) dx$. Integrates one term correctly.
	Mid partial credit: (6 marks)	_	Integrates all terms correctly, but omits $\frac{1}{b-a}$ from formula for average value
		_	and attempts to evaluate. Correct integration to find average value of $g(x)$, <i>i.e.</i> $\frac{1}{3}\left[-2\frac{x^4}{4}+7\frac{x^3}{3}-2\frac{x^2}{2}-x\right]\Big _0^3$,
			but fails to evaluate <u>or</u> evaluates incorrectly <u>or</u> evaluates using incorrect limits.
	High partial credit: (8 marks)	-	Correct integration to find average value of $g(x)$ with full substitution of limits, <i>i.e.</i> $\frac{1}{3}\left[-\frac{2}{4}(3)^4 + \frac{7}{3}(3)^3 - \frac{2}{2}(3)^2 - 3\right]$ or similar, but fails to evaluate <u>or</u> evaluates incorrectly.

Scale 10D (0, 4, 6, 8, 10)

(25 marks)

6(a) Let
$$f(x) = \ln \sqrt{\frac{x+1}{x-1}}$$
, for $x > 1$, where $x \in \mathbb{R}$.

(i) Use the rules of logarithms to find f'(x), the derivative of f(x). Give your answer in the form $\frac{a}{a-ax^2}$, where $a \in \mathbb{Z}$. (10C)

$$f(x) = \ln \sqrt{\frac{x+1}{x-1}}$$

$$= \ln \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\ln(x+1) - \ln(x-1)\right]$$

$$\Rightarrow f'(x) = \frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1}\right]$$

$$= \frac{x-1-(x+1)}{2(x+1)(x-1)}$$

$$= \frac{-2}{2(x^2-1)}$$

$$= \frac{-1}{x^2-1}$$

$$= \frac{1}{1-x^2}$$

Scale 10C (0, 4, 7, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> uses rules
			of logarithms to find $\ln\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}}$ or
			$\frac{1}{2}[\ln(x+1) - \ln(x-1)].$
		_	Differentiates one term correctly.
	High partial credit: (7 marks)		Differentiates $f(x)$ correctly,
			<i>i.e.</i> $f'(x) = \frac{1}{2} \left[\frac{1}{x+1} - \frac{1}{x-1} \right]$, but fails
			to find answer in required form.

(5C)

6(a) (cont'd.)

(ii) Hence, find the co-ordinates of the point at which the slope of the tangent to the curve y = f(x) is parallel to the line x + 3y - 1 = 0.

	Slope, m	=	f'(x)	
		=	$\frac{1}{1-x^2}$	
	Slope of tangent par	callel to	b line $x + 3y - 1$	1 = 0
	x + 3y - 1	=	0	
\Rightarrow	3у	=	-x + 1	
\Rightarrow	у	=	$-\frac{1}{3}x + \frac{1}{3}$	
	У	=	mx + c	
\Rightarrow	m	=	$-\frac{1}{3}$	
\Rightarrow	$\frac{1}{1-x^2}$	=	$-\frac{1}{3}$	
\Rightarrow	$1 - x^2$	=	-3	
\Rightarrow	$-x^2$	=	-3 - 1	
	2	=	-4	
\Rightarrow	x^2	=	4	
\Rightarrow	X	=	± 2	. 1
\Rightarrow	X	=	2	as $x > 1$
	f(x)	=	$\ln \sqrt{\frac{x+1}{x-1}}$	
	@ $x = 2$		- 	
\Rightarrow	<i>f</i> (2)	=	$\ln\sqrt{\frac{2+1}{2-1}}$	
		=	$\ln\sqrt{\frac{3}{1}}$	
		=	$\ln\sqrt{3}$ or $\frac{1}{2}$	n3
\Rightarrow	Co-ordinates	=	$(2, \ln\sqrt{3})$	
	Low partial credit:	(2 mar	ks) –	Any relevant first step, <i>e.g.</i> writes down correct relevant formula for the equation of a line.

Scale 5C (0, 2, 4, 5)
------------	-------------

	_	of a line. Finds $m = -\frac{1}{3} \text{ or } f'(x) = -\frac{1}{3}$, but fails
		to progress.
High partial credit: (4 marks)		Correctly equates $f'(x) = \frac{1}{1 - x^2} = -\frac{1}{3}$
		and finds correct value(s) of <i>x</i> co-ordinate [accept ± 2], but fails to find <u>or</u> finds incorrect value of <i>y</i> co-ordinate.

6(b)	Find the co-ordinates of the	e point of inflectio	n of the c	$urve \ y = \frac{xe^{x+1}}{e^{2-x}}.$	10D)
		у	= = =	$\frac{xe^{x+1}}{e^{2-x}}$ $xe^{x+1-(2-x)}$ $xe^{x+1-2+x}$ xe^{2x-1}	
	\Rightarrow	$\frac{dy}{dx}$	= = =	$x\frac{d}{dx}(e^{2x-1}) + (e^{2x-1})\frac{d}{dx}(x)$ $x(e^{2x-1})(2) + (e^{2x-1})(1)$ $(2x+1)e^{2x-1}$	
		$\frac{d^2y}{dx^2}$	= = =	$(2x+1)\frac{d}{dx}(e^{2x-1}) + (e^{2x-1})\frac{d}{dx}(2x+1)$ $(2x+1)(e^{2x-1})(2) + (e^{2x-1})(2)$ $2(2x+1+1)e^{2x-1}$ $2(2x+2)e^{2x-1}$	
		@ point of inflect $\frac{d^2y}{dr^2}$	etion =	0	
	$\begin{array}{c} \uparrow \\ \uparrow $	$2(2x+2)e^{2x-1}$ $2x+2$ $2x$ x	= = =	0 0 -2 -1	
		<i>y</i> (@ $x = -1$	=	$\frac{xe^{x+1}}{e^{2-x}}$	
		у	=	$\frac{(-1)e^{-1+1}}{e^{2-(-1)}} - \frac{-e^{0}}{e^{2+1}}$	
	\Rightarrow	Co-ordinates	=	$-\frac{1}{e^3}$ (-1, $-\frac{1}{2}$)	
	Scale 10D (0, 4, 6, 8, 10)	Low partial cre	dit: (4 ma	<i>e</i> ³ (rks) – Any relevant first step, <i>e.g.</i> writes dow	wn

8, 10)	Low partial credit: (4 marks)		Any relevant first step, <i>e.g.</i> writes down $\frac{d^2y}{dx^2} = 0$ at point of inflection and stops. Finds correctly $y = xe^{2x-1}$. Differentiates one term correctly.
	Mid partial credit: (6 marks)	_	Finds $\frac{dy}{dx}$ correctly (simplified <u>or</u> not), but fails to progress.
		- Finds $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly, bu equated to zero.	Finds $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly, but not equated to zero.
	High partial credit: (8 marks)	_	Finds both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly and equates to zero, but fails to finish fully, <i>e.g.</i> finds correct value of <i>x</i> co-ordinate, but fails to find <u>or</u> finds incorrect value of <i>y</i> co-ordinate.

Section B

Answer all three questions from this section.

Question 7

(i) Using similar triangles, or otherwise, show that

$h = \frac{4}{3}$	$\frac{5-5r}{3}.$		(5C)
	Diameter of cone	=	18 cm
\Rightarrow	Radius of cone	=	9 cm
	ΔVOP and ΔVCQ	are equ	iangular/similar
\Rightarrow	$\frac{9}{15}$	=	$\frac{r}{15-h}$
\Rightarrow	9(15 - h)	=	15 <i>r</i>
\Rightarrow	3(15 - h)	=	5 <i>r</i>
\Rightarrow	45 - 3h	=	5r
\Rightarrow	3h	=	45 - 5r
\Rightarrow	h	=	$\frac{45-5r}{3}$

Contexts and Applications

0 15 cm h Р 18 cm

V

... as both Δs have common angle α , 90° angles and hence, the third angles in both Δs are equal

5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> identifies one pair of corresponding sides <u>or</u> writes down $\tan \alpha = \frac{9}{15}$.
		-	Explains why triangles are similar.
	High partial credit: (4 marks)	_	Finds $\frac{9}{15} = \frac{r}{15 - h}$, but fails to finish
			or finish incorrectly.

Express the volume of the smaller cone, in terms of π and *r*, in its simplest form. (ii) $= \frac{1}{3}\pi r^2 h$ $= \frac{1}{3}\pi r^2 \left(\frac{45-5r}{3}\right)$

 V_{small}

Scale 5C* (0, 2, 4, 5)

Scale

$=$ $\frac{\pi r^2}{(1-r)^2}$	$\frac{(45-5r)}{9}$	$-\operatorname{cm}^3 \operatorname{\underline{or}} \frac{45\pi r^2 - 5\pi r^3}{9} \operatorname{cm}^3$
Low partial credit: (2 marks)	—	Any relevant first step, <i>e.g.</i> writes down correct formula for the volume of a cone.
High partial credit: (4 marks)	_	Substitutes fully correctly into volume formula, <i>i.e.</i> $V_{\text{small}} = \frac{1}{3}\pi r^2 \left(\frac{45-5r}{3}\right)$, but fails to finish <u>or</u> finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('cm³') - apply only once to each section (a), (b), (c), *etc.* of question.

(5C*)

(45 marks)

Question 7 (cont'd.)

7(a) (cont'd.)

(iii) Find the maximum volume of the smaller cone, in terms of π .

(10D*)

	$V_{ m small}$	=	$\frac{45\pi r^2 - 5\pi r^3}{9}$	answer from part (a)(ii)
	$\frac{dV}{dr}$	=	$\frac{d}{dr}\left(\frac{45\pi r^2 - 5\pi r^3}{9}\right)$	
		=	$\frac{90\pi r - 15\pi r^2}{9}$	
	Maximum volume	when $\frac{a}{a}$	$\frac{dV}{dr} = 0$	
\Rightarrow	$\frac{90\pi r - 15\pi r^2}{9}$	=	0	
\Rightarrow	$90\pi r - 15\pi r^2$	=	0	
\Rightarrow	$15\pi r^2$	=	$90\pi r$	
\Rightarrow	r	=	$\frac{90}{15}$	
		=	6 cm	
	$V_{ m small}$	=	$\frac{45\pi r^2 - 5\pi r^3}{9}$	
\Rightarrow	V _{small (max)}	=	$\frac{45\pi(6)^2 - 5\pi(6)^3}{9}$	
		=	$\frac{1,620\pi - 1,080\pi}{9}$	
		=	$\frac{540\pi}{9}$	
		=	60π cm ³	

** Accept students' answers from part (a)(ii) for V_{small} if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down 'Maximum volume when $\frac{dV}{dr} = 0$ '. Differentiates one term correctly.
	Mid partial credit: (6 marks)		Differentiates correctly to find $\frac{dV}{dr}$, but fails to progress
			funs to progress.
	High partial credit: (8 marks)	_	Finds correct value of r , but fails to find <u>or</u> finds incorrect value for $V_{\text{small (max)}}$. Finds correct $V_{\text{small (max)}}$, but not in required form.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('cm³') - apply only once to each section (a), (b), (c), *etc.* of question.

(5C)

7(a) (cont'd.)

(iv) What fraction of the larger cone is unoccupied?

	$V_{ m cone}$	=	$\frac{1}{3}\pi r^2h$	
	$V_{ m large}$	=	$\frac{1}{3}\pi(9)^2(15)$	
		=	$\frac{1,215\pi}{3}$	
		=	405π	
	$V_{\text{small (max)}}$	=	60π	answer from part (a)(iii)
\Rightarrow	Volume unoccupied	=	$405\pi - 60\pi$	
	1	=	345π cm ³	
\Rightarrow	Fraction of the large	r cone u	inoccupied	
	-		345π	
		=	$\overline{405\pi}$	
			69	
		=	81	
			23	
		=	23	

27

** Accept students' answers from part (a)(iii) for $V_{\text{small}(\text{max})}$ if not oversimplified.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for the volume of a cone with some correct substitution. Finds correct value for V_{large} .
High partial credit: (4 marks)	_	Finds correct value of volume unoccupied, [ans. 345π], but fails to finish <u>or</u> finishes incorrectly.
	_	Finds fraction of larger cone occupied [ans. $\frac{4}{27}$], but fails to finish <u>or</u> finishes incorrectly, <i>i.e.</i> $1 - \frac{4}{27} = \frac{23}{27}$.

Question 7 (cont'd.)

7(b) A motorised winch is used to pull a boat into its berth position. The winch cable is attached to the bow (*B*) of the boat, as shown. The winch (*W*) is located on the quay 3 m above the bow of the boat and $|\angle WOB|$ is 90°. The winch operates at a constant speed of 0.5 m/s.

- (i) Let *l* be the length of the winch cable, |*WB*|.Find *x*, the distance of the boat from the quay wall, in terms of *l*.
 - Using Pythagoras' theorem $|Opp|^{2} + |Adj|^{2}$ $|Hyp|^2$ = WB l = |OB|= х 3 |WO|= $x^{2} + (3)^{2}$ $l^{2} - 9$ l^2 = \Rightarrow x^2 = \Rightarrow $\sqrt{l^2 - 9}$ or $(l^2 - 9)^{\frac{1}{2}}$ or $(l^2 - 9)^{0.5}$ = \Rightarrow х

Scale 5B (0, 2, 5)

Scale 5B (0, 2, 5)

Partial credit: (2 marks)	_	Substitutes correctly into Pythagoras' theorem, <i>i.e.</i> $l^2 = x^2 + (3)^2$, but fails to isolate or isolates x incorrectly.
		isolate or isolates x incorrectly.

(ii) Find the rate of change of x with respect to l.

 \Rightarrow

$$x = \sqrt{l^2 - 9}$$

$$\frac{dx}{dl} = \frac{d}{dl}(l^2 - 9)^{\frac{1}{2}}$$

$$= \frac{1}{2}(l^2 - 9)^{-\frac{1}{2}}(2l)$$

$$= \frac{l}{\sqrt{l^2 - 9}}$$

... answer from part (b)(i)

(**5B**)

(**5B**)

Partial credit: (2 marks) – Some correct relevant differentiation,
but incomplete, *e.g.*
$$\frac{dx}{dl} = \frac{1}{2}(l^2 - 9)^{-\frac{1}{2}}$$
,
 $\frac{1}{2}(l^2 - 9)^{\frac{1}{2}}(2l) \underline{\text{or}}(l^2 - 9)^{-\frac{1}{2}}(2l)$.

(10D*)

7(b) (cont'd.)

(iii) Hence, find the speed at which the boat is approaching the quay wall when the length of the winch cable is 13 m.

	dl		0.5	
	\overline{dt}	=	0.5 m/s	
	x	=	$\sqrt{l^2-9}$	
⇒	$\frac{dx}{dl}$	=	$\frac{l}{\sqrt{l^2 - 9}}$	answer from part (b)(ii)
	$\frac{dx}{dt}$	=	$\frac{dx}{dl} \times \frac{dl}{dt}$	
\Rightarrow	$\frac{dx}{dt}$	=	$\frac{l}{\sqrt{l^2 - 9}} \times 0.5$	
		=	$\frac{l}{2\sqrt{l^2-9}}$	
	@ <i>l</i> = 13			
⇒	$\frac{dx}{dt}$	=	$\frac{13}{2\sqrt{(13)^2-9}}$	
		=	$\frac{13}{2\sqrt{169-9}}$	
		=	$\frac{13}{2\sqrt{160}}$	
		=	$\frac{13\sqrt{10}}{80}$	
		=	0.513870	
		ĩ	0.51 m/s or $0.514 m/s$	<u>or</u> 0.5139 m/s

** Accept students' answers from part (b)(ii) for $\frac{dx}{dl}$ if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $\frac{dl}{dt} = 0.5 \text{ or } \frac{dx}{dt} = \frac{dx}{dl} \times \frac{dl}{dt} \text{ or similar.}$ Mentions a relevant rate of change, <i>i.e.</i> $\frac{dx}{dt} \frac{\text{and/or}}{dt} \frac{dx}{dt} \frac{\text{and/or}}{dt} \frac{dl}{dt}$.
	Mid partial credit: (6 marks)	_	Finds $\frac{dx}{dt} = \frac{l}{\sqrt{l^2 - 9}} \times 0.5 \text{ or } \frac{l}{2\sqrt{l^2 - 9}},$
			but fails to progress.
	High partial credit: (8 marks)	_	Finds $\frac{dx}{dt} = \frac{13}{2\sqrt{(13)^2 - 9}}$, but fails to
			evaluate or evaluates incorrectly.

Deduct 1 mark off correct answer only **0** if final answer is not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('m/s') - apply only once to each section (a), (b), (c), *etc.* of question.

(55 marks)

(5C)

8(a) In the 100-metre race, sprinters typically reach their top speed about halfway through the race and try to maintain that speed for as long as possible.

A student analysed a sprinter's performance over the course of a particular race and determined that the speed of the sprinter can be approximated by the following model:

	0,	$0 \le t < 0.15$
v(t) = -	$\left\{-0.6t^2 + 5.4t - k,\right.$	$0{\cdot}15 \leq t < 4{\cdot}5$
	11.3535,	$t \ge 4 \cdot 5$

where v is the speed in metres per second, t is the time in seconds from the starting signal and k is a constant.

(i) Find the value of k.

	Consider $0.15 \le t < 4.5$ v(t)	=	$-0.6t^2 + 5.4t - k$
$\stackrel{\Rightarrow}{\rightarrow}$	@ $t = 4.5$ v(4.5) $-0.6(4.5)^2 + 5.4(4.5) - k$ k	= = = =	$-0.6(4.5)^{2} + 5.4(4.5) - k$ 11.3535 11.3535 $-0.6(4.5)^{2} + 5.4(4.5) - 11.3535$ $-12.15 + 24.3 - 11.3535$ 0.7965
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 mar	·ks)	 Any relevant first step, <i>e.g.</i> writes down v(4.5) = 11.3535 and stops. Substitutes correctly into v(t), <i>i.e.</i> v(4.5) = -0.6(4.5)² + 5.4(4.5) - k, but fails to equate to 11.3535.
	High partial credit: (4 ma	rks)	- Equates correctly $v(4.5) = 11.3535$, <i>i.e.</i> $-0.6(4.5)^2 + 5.4(4.5) - k = 11.3535$, but fails to find <u>or</u> finds incorrect value of <i>k</i> .

(ii) Sketch the graph of v as a function of t for the first 7 seconds of the race.

0		Points:		
		v(t)	=	$-0.6t^2 + 5.4t - 0.7965$ answer from part (a)(i)
		@ $t = 0.15$		
		v(0.15)	=	0
		@ $t = 1$		
	\Rightarrow	v(1)	=	$-0.6(1)^2 + 5.4(1) - 0.7965$
			=	-0.6 + 5.4 - 0.7965
			=	4.0035
		@ <i>t</i> = 2		
	\Rightarrow	v(2)	=	$-0.6(2)^2 + 5.4(2) - 0.7965$
			=	-2.4 + 10.8 - 0.7965
			=	7.6035
		@ <i>t</i> = 3		
	\Rightarrow	v(3)	=	$-0.6(3)^2 + 5.4(3) - 0.7965$
			=	$-5 \cdot 4 + 16 \cdot 2 - 0 \cdot 7965$
			=	10.0035

2018.1 L.17/20_MS 28/80

(10D)

8(a) (ii) (cont'd.)

⇒	@ <i>t</i> = 4 <i>v</i> (4)	= = =	$-0.6(4)^2 + 5.4(4) - 0.7965$ -9.6 + 21.6 - 0.7965 11.2035
\Rightarrow	@ $t = 4.5$ v(4.5)	= = =	$-0.6(4.5)^{2} + 5.4(4.5) - 0.7965$ $-12.15 + 24.3 - 0.7965$ 11.3535

**	Accent students'	answers from	nart (a)(i) f	for $v(t)$ if not	oversimplified
	Accept students	answers from	part (a)(1) I	V(l) = I = I O l	oversimplined.

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> evaluates $v(t)$ for any value between 0.15 and 4.5. Shows correct graph of $v(t)$ for $t = 4.5$ to $t = 7$ (straight line) only.
Mid partial credit: (6 marks)	_	Evaluates $v(t)$ for several values between 0.15 and 4.5, but fails to plot graph <u>or</u> plots incorrect graph.
High partial credit: (8 marks)	_	Graph almost fully correct, but with one error/omission, <i>e.g.</i> graph begins rising from $(0, 0)$ or straight lines(s) used instead of a curve.

Scale 10D (0, 4, 6, 8, 10)

8(a) (cont'd.)

(iii)	Find the distance travelled by the sprinter in the first 4.5 seconds of the race.	(10 D *)
	Distance travelled in the interval $[0, 4.5]$	
	4.5	

$$s(t) = 0 + \int_{0.15} v(t) dt$$

$$v(t) = -0.6t^{2} + 5.4t - 0.7965 \quad \dots \text{ answer from part (a)(i)}$$

$$\Rightarrow s(t) = \int_{0.15}^{4.5} (-0.6t^{2} + 5.4t - 0.7965) dt$$

$$= -0.6\frac{t^{3}}{3} + 5.4\frac{t^{2}}{2} - 0.7965t \Big|_{0.15}^{4.5}$$

$$= -0.2t^{3} + 2.7t^{2} - 0.7965t \Big|_{0.15}^{4.5}$$

$$= [-0.2(4 \cdot 5)^{3} + 2.7(4 \cdot 5)^{2} - 0.7965(4 \cdot 5)] - [-0.2(0 \cdot 15)^{3} + 2.7(0 \cdot 15)^{2} - 0.7965(0 \cdot 15)]$$

$$= [-18 \cdot 225 + 54 \cdot 675 - 3 \cdot 58425] - [-0.000675 + 0.00075 - 0.119475]$$

$$= [32 \cdot 86575] - [-0.0594] = 32 \cdot 92515 \text{ m}$$

** Accept students' answers from part (a)(i) for v(t) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down relevant integration formula for distance <i>i.e.</i> $s(t) = \int v(t) dt$ and stops.
		-	Some correct integration <u>and stops</u> or fails to progress.
	Mid partial credit: (6 marks)	_	Integrates $v(t)$ correctly to find $s(t)$, <i>i.e.</i> $s(t) = -0.6 \frac{t^3}{3} + 5.4 \frac{t^2}{2} - 0.7965t$, but no limits <u>or</u> incorrect limits used.
	High partial credit: (8 marks)	_	Integrates $v(t)$ correctly with correct limits, <i>i.e.</i> $s(t) = -0.6 \frac{t^3}{3} + 5.4 \frac{t^2}{2} - 0.7965t \Big _{0.15}^{4.5}$, but fails to evaluate <u>or</u> evaluates incorrectly.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m') - apply only once to each section (a), (b), (c), *etc.* of question.

8(a) (cont'd.)

(iv) Hence, find the sprinter's finishing time for the race. Give your answer correct to three decimal places.

(5C*)

	Distance travelled in the interval $[0, 4.5]$			
		=	32·92515 m	answer from part (a)(iii)
	Distance travelled i	n the in	iterval $[4.5, end of race]$	
		=	100 – 32·92515 67·07485 m	
	Speed	=	Distance Time	
\Rightarrow	Time	=	Distance Speed	
	$v(t \ge 4.5)$	=	11.3535	
\Rightarrow	$t(t \ge 4 \cdot 5)$	=	$\frac{67.07485}{11.3535}$	
		=	5.907856	
⇒	Total time	= = ≅	4·5 + 5·907856 10·407856 10·408 s	

** Accept students' answers from part (a)(iii) for distance travelled in the interval [0, 4.5] if not oversimplified.

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down relevant formula for speed with some correct substitution. Finds distance travelled after 4.5 seconds [ans. 100 – 32.92515 <u>or</u> answer from part (iii)].
High partial credit: (4 marks)	_	Finds correct value of $t(t \ge 4.5)$ [ans. 5.908, 5.907856, or $\frac{67.07485}{11.3535}$], but fails to finish or finishes incorrectly.

Deduct 1 mark off correct answer only ① if final answer is not rounded or incorrectly rounded or ② for the omission of or incorrect use of units ('s') - apply only once to each section (a), (b), (c), etc. of question.

(10D*)

8(b) A model for an Olympic-standard 100 m sprinter was developed by mathematicians.

The speed of the sprinter may be calculated using the function:

$$w(t) = 11 \cdot 7(1 - e^{-0 \cdot 8t}) + 0 \cdot 03(1 - e^{0 \cdot 3t})$$

where *t* is the time in seconds from the starting signal.

(i) Find the maximum speed of the sprinter, correct to two decimal places.

	Maximum speed when $\frac{dw}{dt}$	= 0	
	w(t)	=	$11.7(1 - e^{-0.8t}) + 0.03(1 - e^{0.3t})$
\Rightarrow	$\frac{dw}{dw}$	=	$\frac{d}{dt} [11.7(1 - e^{-0.8t}) + 0.03(1 - e^{0.3t})]$
	dt	=	$\frac{dt}{11.7[0 - (e^{-0.8t})(0.8)] + 0.03[0 - (e^{0.3t})(0.3)]}$
		=	$11 \cdot 7(0 \cdot 8)e^{-0 \cdot 8t} - 0 \cdot 03(0 \cdot 3)e^{0 \cdot 3t}$
		=	$9.36e^{-0.8t} - 0.009e^{0.3t}$
	-0.8t - 0.8t	=	0
\Rightarrow	$9.36e^{-0.8t} - 0.009e^{0.5t}$ $9.36e^{-0.8t}$	=	0 0.009 $a^{0.3t}$
\rightarrow	$e^{0.3t}$	_	9.36
\Rightarrow	$\overline{e^{-0.8t}}$	=	0.009
\Rightarrow	$e^{0\cdot 3t + 0\cdot 8t}$	=	1,040
\Rightarrow	$e^{1 \cdot 1t}$	=	1,040
\Rightarrow	$\ln(e^{1/n})$	=	In 1,040
\rightarrow	1.11	=	ln 1,040
\Rightarrow	t	=	1.1
		=	6·315432 s
	Maximum speed when $t = 6$	5-31543	32 0.84
	w(t) w(6,215422)	=	$\frac{11\cdot7(1-e^{-0.6})+0.03(1-e^{0.5})}{11\cdot7(1-e^{-0.8(6\cdot315432)})+0.02(1-e^{0.3(6\cdot315432)})}$
\rightarrow	W(0·515452)	=	11.7(0.993605) + 0.03(-5.650086)
		=	11.625186 0.169502
		=	11.455683
		ĩ	11·46 m/s
Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 mar	ks)	– Any relevant first step, <i>e.g.</i> writes down
			'Maximum speed when $\frac{dw}{dt} = 0$ '.
			at Differentiates one term correctly ρg
			$11.7[0 - (e^{-0.8t})(0.8)].$
	Mid partial credit: (6 marl	cs)	Differentiates correctly to find $\frac{dw}{dt}$ and
			equates $\frac{dw}{dt} = 0$, but fails to isolate <u>or</u>
			isolates <i>t</i> incorrectly.
	High partial credit: (8 mar	·ks)	 Finds correct value of t [ans. 6.315432], but fails to find <u>or</u> finds incorrect value for maximum speed.

Deduct 1 mark off correct answer only **0** if final answer is not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('m/s')
 apply only once to each section (a), (b), (c), *etc.* of question.

(**10C**)

8(b) (cont'd.)

(ii) Find an expression for the distance travelled by the sprinter after time *t*.

s(t)	=	$\int w(t) dt$
w(t)	=	$11.7(1 - e^{-0.8t}) + 0.03(1 - e^{0.3t})$
s(t)	=	$\int [11 \cdot 7(1 - e^{-0 \cdot 8t}) + 0 \cdot 03(1 - e^{0 \cdot 3t})] dt$
	=	$11 \cdot 7(t - \frac{e^{-0.8t}}{-0.8}) + 0 \cdot 03(t - \frac{e^{0.3t}}{0.3}) + c$
	=	$11 \cdot 7t + 14 \cdot 625e^{-0 \cdot 8t} + 0 \cdot 03t - 0 \cdot 1e^{0 \cdot 3t} + c$
	=	$11.73t + 14.625e^{-0.8t} - 0.1e^{0.3t} + c$
@ $t = 0, s = 0$		
s(0)	=	$11.73(0) + 14.625e^{-0.8(0)} - 0.1e^{0.3(0)} + c$
	=	$14 \cdot 625e^0 - 0 \cdot 1e^0 + c$
	=	14.625(1) - 0.1(1) + c
	=	14.525 + c
	=	0
14.525 + c	=	0
C	=	-14.525
s(t)	=	$11.73t + 14.625e^{-0.8t} - 0.1e^{0.3t} - 14.525$
Low partial cree	lit: (4 ma	rks) – Any relevant first step, <i>e.g.</i> writes down relevant integration formula for distance
		<i>i.e.</i> $s(t) = \int w(t) dt$ and stops.
		 Some correct integration <u>and stops</u>
	$s(t)$ $w(t)$ $s(t)$ $(a) t = 0, s = 0$ $s(0)$ $14 \cdot 525 + c$ c $s(t)$ Low partial created	$s(t) = \\ w(t) = \\ s(t) = \\ = \\ = \\ = \\ @ t = 0, s = 0 \\ s(0) = \\ = \\ = \\ = \\ = \\ = \\ 14 \cdot 525 + c \\ c = \\ s(t) = \\ \\ Low partial credit: (4 matrix)) = \\ \end{bmatrix}$

Scale 10C (0	, 4, 7, 10)
--------------	-------------

		or fails to progress.
High partial credit: (7 marks)	_	Integrates $w(t)$ correctly to find $s(t)$, <i>i.e.</i> $s(t) = 11.73t + 14.625e^{-0.8t} - 0.1e^{0.3t}$, but fails to find <u>or</u> finds incorrect value of <i>c</i> .

conclusion or incorrect conclusion given.

(5D)

8(b) (cont'd.)

(iii) Hence, show that the sprinter completes the race in less than 10 seconds.

	s(t)	=	11.73t + 14.5t	$\cdot 625e^{-0.8t} - 0.1e^{0.3t} - 14.525$
\Rightarrow	@ <i>t</i> = 10 <i>s</i> (10)	= = =	$11.73(10) + \\117.3 + 14.117.3 + 0.00100.771352$	$14.625e^{-0.8(10)} - 0.1e^{0.3(10)} - 14.525$ $625e^{-8} - 0.1e^{3} - 14.525$ 04906 2.008553 14.525
as	100.771352 t_{race}	> <	100 10 s	
	** Accept stude	nts' ans	swers from pa	art (b)(11) for $s(t)$ if not oversimplified.
Scale 5D (0, 2, 3, 4, 5)	Low partial credit:	(2 mar	ks) – –	Any relevant first step, <i>e.g.</i> writes down condition required, 'if $s(10) > 100$, then $t_{race} < 10'$. Some correct substitution into $s(10)$, <u>and stops or</u> fails to progress.
	Mid partial credit:	(3 mark	(s) –	Fully correct substitution into $s(10)$, but fails to evaluate <u>or</u> evaluates incorrectly.
	High partial credit:	(4 mar	·ks) –	Finds correct value for $s(10)$, but no

- 9(a) A circular disc is divided into 12 unequal sectors whose areas are in arithmetic sequence. The area of the largest sector is twice that of the smallest sector. The radius of the disc is rand the acute angle in the smallest sector is θ , in degrees, as shown. The increase in angle in subsequent sectors is λ . A (i) Find the areas of the smallest and the largest sectors, in terms of r and θ . (**5B**) $\frac{\theta}{360}$ Area of smallest sector πr^2 = $\pi r^2 \theta$ = 360 $\frac{\pi r^2\theta}{360}$ $\frac{2\theta}{360}$ Area of largest sector or π \Rightarrow = $\pi r^2 \theta$ = 180 Scale 5B (0, 2, 5) Partial credit: (2 marks) Any relevant first step, e.g. writes down _ correct formula for the area of a sector. Finds correct area of one sector only. _
 - (ii) Find an expression for the acute angle of the *n*th sector in the arithmetic sequence and hence, write down the size of the angle in the largest sector in terms of θ and λ .

Acute angle of the *n*th sector

(5C)

	T _n a d	= = =	a + (n-1)d heta λ	
\Rightarrow	T_n	=	$\theta + (n-1)\lambda$	
0	Size of the angle in	the larg	gest sector	
\Rightarrow	T_n T_{12}	= =	$egin{aligned} & heta+(n-1)\lambda \ & heta+(12-1)\lambda \ & heta+11\lambda \end{aligned}$	
0, 2, 4, 5)	Low partial credit:	: (2 mar	ks) – –	Any relevant first step, <i>e.g.</i> writes down correct formula for T_n with some correct substitution (<i>a</i> <u>or</u> <i>d</i>). Correctly identifies $a = \theta$ and $d = \lambda$ with some correct substitution into formula for T_n (not stated). Finds expression for T_n by inspection <u>or</u> calculation <u>and stops</u> .
	High partial credit	: (4 mai	rks) –	Finds correct expression for T_n , but fails to find <u>or</u> finds incorrect expression for T_{12} .

Scale 5C (0, 2, 4, 5)

0

(5C)

9(a) (cont'd.)

(iii) Find an equation for the sum of the acute angles in all of the sectors, in terms of θ and λ .

$$S_n, \text{ the sum of the first } n \text{ angles}$$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$n = 12$$

$$a = \theta$$

$$d = \lambda$$

$$\Rightarrow S_{12} = \frac{12}{2}[2\theta + (12-1)\lambda]$$

$$= 6[2\theta + 11\lambda]$$

$$= 12\theta + 66\lambda$$

Scale 5C (0, 2, 4, 5)

0

_	Any relevant first step, <i>e.g.</i> writes down correct formula for S_n with some correct substitution (<i>a</i> or <i>d</i>). Correctly identifies $a=\theta$ and $d=\lambda$ with some correct substitution into formula for S_n (not stated).
_	Finds correct expression for S_n , [ans. $\frac{n}{2}[2\theta + (n-1)\lambda]$, but fails to evaluate <u>or</u> incorrectly evaluates S_{12} . Finds correct expression for S_{12} , [ans. $\frac{12}{2}[2\theta + (12-1)\lambda]$, but fails to finish or finishes incorrectly.
	-
(5C)

9(a) (cont'd.)
---------------	----------

0

(iv) Use your answers to parts (ii) and (iii) above to find, in degrees, the value of θ .

	<i>T</i> ₁₂	=	$ heta+11\lambda$ 2 $ heta$		answer from part (a)(ii) answer from part (a)(i)
_	0 + 112		20		unis () en monn pune (u)(1)
\Rightarrow	$\theta + 11\lambda$	=	20 20 0		
\rightarrow	11λ	_	20 = 0		
		_	$\overset{0}{ heta}$		
\Rightarrow	λ	=	11		
\Rightarrow	S_{12}	=	$12\theta + 66\lambda$		
	12	=	360°		answer from part (a)(iii)
\Rightarrow	$12\theta + 66\lambda$	=	360°		-
	Substituting $\lambda = \frac{\ell}{1}$	$\frac{9}{1}$ into e	equation:		
	(A)	1			
\Rightarrow	$12\theta + 66\left(\frac{\theta}{11}\right)$	=	360°		
\Rightarrow	$12\theta + 6\theta$	=	360°		
\Rightarrow	18θ	=	360°		
\Rightarrow	heta	=	20°		
	T_{12}	=	$\theta + 11\lambda$		answer from part (a)(ii)
		=	2θ		answer from part (a)(i)
\Rightarrow	$\theta + 11\lambda$	=	2θ	①	
\Rightarrow	S_{12}	=	$12\theta + 66\lambda$		
		=	360°		answer from part (a)(iii)
\Rightarrow	$12\theta + 66\lambda$	=	360°	②	
1	$\theta + 11\lambda$	=	2θ (×-6)		
2	$12\theta + 66\lambda$	=	<u>360°</u> (×1)		
	Equating ① and ②	D:			
1	$-6 heta-66\lambda$	=	-12θ		
2	$12\theta + 66\lambda$	=	<u>360°</u>		
\Rightarrow	6 heta	=	$360^{\circ} - 12\theta$		
\Rightarrow	18θ	=	360°		
\Rightarrow	heta	=	20°		

<u>or</u> 0

** Accept students' answers from previous parts if not oversimplified.

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down one expression in terms of θ and λ , <i>i.e.</i> $\theta + 11\lambda = 2\theta$ or $12\theta + 66\lambda = 360^{\circ}$. Finds λ in terms of θ , <i>i.e.</i> $\frac{\theta}{11}$ [Method ①], and stops or fails to progress.
High partial credit: (4 marks)	_	Finds λ in terms of θ , <i>i.e.</i> $\frac{\theta}{11}$, and finds second expression, <i>i.e.</i> $12\theta + 66\lambda = 360^{\circ}$ [Method ①], but fails to finish <u>or</u> finishes incorrectly. Finds two expressions in terms of θ and λ , with work towards finding θ [Method ②], but fails to finish <u>or</u> finishes incorrectly.

Scale 5C (0, 2, 4, 5)

9(b) An equilateral triangle can be subdivided into four smaller equilateral triangles of equal area. The first three patterns in a sequence of patterns are shown below. In each successive pattern, the unshaded triangle is subdivided into smaller equal triangles.

(i) Complete the table below to show the number of shaded and unshaded equilateral triangles in each pattern.

(5C)

(5C)

Pattern	1	2	3	4	5
Number of shaded triangles	1	4	<u>13</u>	<u>40</u>	<u>121</u>
Number of unshaded triangles	3	<u>9</u>	<u>27</u>	<u>81</u>	<u>243</u>

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	One, two or three correct entries.
High partial credit: (4 marks)	_	Four, five or six correct entries.

(ii) Write an expression in n for the number of unshaded triangles in the nth pattern in the sequence.

	Number of unshac	led triangles	3	<u>9</u>	<u>27</u>	<u>81</u>	<u>243</u>	
	⇒	Unshaded trian Geometric seq T_n a r T_n	ngles: 3, 9 uence = = = = =	, 27, 81, 24 ar^{n-1} 3 3 $3(3^{n-1})$ 3^{1+n-1} 3^{n}				
Scale 5	°C (0, 2, 4, 5)	Low partial c	eredit: (2 m	arks)	 An cor sub Reation to the but Con sequence cor (not set to the set to t	y relevant f rect formul ostitution (<i>a</i> cognises ter he power o not the tern rrectly iden uence with rect substitut t stated).	First step, <i>e</i> . a for T_n wi <u>or</u> <i>r</i>). rms in the s f 1, 2, 3, <i>i.e</i> m in the <i>n</i> t tifies patte correct <i>a a</i> ution into f	<i>g.</i> writes down th some correct sequence as 3 <i>e.</i> 3^1 , 3^2 , 3^3 , <i>etc.</i> , h pattern $[3^n]$. rn as geometric and <i>r</i> and some formula for T_n
		High partial o	credit: (4 n	narks)	– Ful <i>i.e.</i>	ly correct s $T_n = 3(3^{n-1})^{n-1}$	ubstitution ¹), but fails	into T_n , s to finish

2018.1 L.17/20_MS 38/80

9(b) (cont'd.)

Number of shade	d triangles	1	4	<u>13</u>	<u>40</u>	<u>121</u>	
Change (1st differ	rence)	3		<u>9</u>	2 <u>7</u> 8	 81	
C A	T_1	=	1		_	_	
	- 1	=	3 ⁰				
	T_2	=	$T_1 + 3^1$	1			
		=	$1 + 3^1$				
	T_3	=	$T_2 + 3^2$	2			
		=	$1 + 3^{1}$	$+3^{2}$			
	T_4	=	$T_3 + 3^3$	3			
		=	$1 + 3^{1}$	$+3^{2}+3^{3}$. n. 1		
\Rightarrow	T_n	=	$1+3^{1}$	$+3^{2}+3^{3}+$	$\dots + 3^{n-1}$		
		=	$3^{\circ} + 3^{\circ}$ S (Get	$+3^{-}+3^{-}$	$+ + 3^{\circ}$	$+3^{2}+3^{3}+$	$\perp 3^{n-1}$
		_			(cs) = -5	тэтэт	+ 5
	S_n	=	$\frac{a(1-r)}{1}$	<u>^")</u>			
			1 - r	•			
	a r	=	1				
	$a (2^0 + 2^1 + 2^2)$		2n-1				
\Rightarrow	$S_n(3^2 + 3^2 + 3^2)$	+ 3' + +	$\frac{3}{1(1-3)}$	$\binom{n}{n}$			
		=	$\frac{1(1-3)}{1-3}$	3			
			1 2n	,			
		=	$\frac{1-3}{-2}$				
			$\frac{-2}{3^n - 1}$				
		=	$\frac{3}{2}$				
	T		$3^{n} - 1$				
\Rightarrow	T_n	=	2				
10D (0, 4, 6, 8, 10)	Low partial c	redit: (4 ma	urks)	– An	y relevant f	first step, e.	g. writes

pattern.

_

_

Identifies that 3^{n-1} added to previous

Finds $T_n = \text{sum}(1 + 3^1 + 3^2 + \dots + 3^{n-1}),$

Finds $T_n = \text{sum}(1 + 3^1 + 3^2 + \dots + 3^{n-1})$

with some correct substitution (a or r)into S_n formula, but fails to finish <u>or</u>

term to get current term.

but fails to progress.

finishes incorrectly.

(iii) Find an expression, in n, for the number of shaded triangles in the nth pattern in the sequence.

(10D)

Mid partial credit: (6 marks)

High partial credit: (8 marks)

(5C)

9(b) (cont'd.)

(iv) Find the fraction of the overall area that is shaded in the 5th pattern.

	Area of 1st pattern	=	$\frac{1}{4}(1)$
	Area of 2nd pattern	=	$\frac{1}{4} + \frac{1}{4}(\frac{1}{4})(3)$
		=	$\frac{1}{4} + \frac{3}{16}$
	Area of 3rd pattern	=	$\frac{1}{4} + \frac{1}{4}(\frac{1}{4})(3) + \frac{1}{4}(\frac{1}{4})(\frac{1}{4})(9)$
		=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64}$
	Pattern:	=	$\textcircled{0} \ \frac{1}{4}, \ \ \textcircled{2} \ \frac{1}{4} + \frac{3}{16}, \ \ \textcircled{3} \ \frac{1}{4} + \frac{3}{16} + \frac{9}{64}, \ \ldots$
	Continuing pottorn:		
	Continuing patient.		
⇒	Area of 4th pattern	=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{9(3)}{64(4)}$
\Rightarrow	Area of 4th pattern Area of 5th pattern	=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{9(3)}{64(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{27(3)}{256(4)}$
$\Rightarrow \\ \Rightarrow$	Area of 4th pattern Area of 5th pattern	=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{9(3)}{64(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{27(3)}{256(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{81}{1,024}$
\Rightarrow	Area of 4th pattern Area of 5th pattern	=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{9(3)}{64(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{27(3)}{256(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{81}{1,024}$ $\frac{256 + 3(64) + 9(16) + 27(4) + 81}{256 + 27(4) + 81}$
\Rightarrow	Area of 4th pattern Area of 5th pattern	=	$\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{9(3)}{64(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{27(3)}{256(4)}$ $\frac{1}{4} + \frac{3}{16} + \frac{9}{64} + \frac{27}{256} + \frac{81}{1,024}$ $\frac{256 + 3(64) + 9(16) + 27(4) + 81}{1,024}$

<u>or</u> 2

 \Rightarrow

0

Sum of geometric progression:

$$S_{n} = \frac{a(1-r^{n})}{1-r} \qquad n=5, \ a=\frac{1}{4}, \ r=\frac{3}{4}$$

$$S_{n} = \frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^{5}\right)}{1-\frac{3}{4}}$$

$$= 1-\left(\frac{3}{4}\right)^{5}$$

$$= 1-\frac{243}{1,024}$$

$$= \frac{781}{1,024}$$

Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> finds fraction of area shaded in first three patterns. Some correct substitution $(a \text{ or } r)$ into S_n formula and stops or fails to progress.
	High partial credit: (4 marks)	_	Substantive work towards finding shaded area in 5th pattern, <i>e.g.</i> correct area for 4th pattern, but fails to finish <u>or</u> finishes incorrectly. Fully correct substitution (<i>a</i> <u>and</u> <i>r</i>) into S_n formula, but fails to finish <u>or</u> finishes incorrectly.

Question 9 (cont'd.)

9(b) (cont'd.)

In which pattern will the shaded area be greater than 95% of the overall area? (v)

(5C)

	Pattern:	=	$ 1 \frac{1}{4}, 2 \frac{1}{4} + \frac{3}{16}, 3 \frac{1}{4} $	$+\frac{3}{16}+\frac{9}{64},\ldots$
	Sum of geometric	progress	sion	
	S_n	=	$\frac{a(1-r^n)}{1-r}$	$a = \frac{1}{4}, r = \frac{3}{4}$
⇒	S _n	=	$\frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^n\right)}{1-\frac{3}{4}}$	
		=	$1 - \left(\frac{3}{4}\right)^n$	
		=	0.95	
\Rightarrow	$1-\left(\frac{3}{4}\right)^n$	=	0.95	
\Rightarrow	$\left(\frac{3}{4}\right)^n$	=	1 - 0.95	
		=	0.05	
\Rightarrow	n	=	$\log_{\underline{3}}(0.05)$	
		=	4 10·413343	
\Rightarrow	n	=	11	

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down that pattern is the sum of a geometric progression and identifies correct <i>a</i> and <i>r</i> . Some correct substitution $(a \text{ or } r)$ into S_n formula and stops or fails to progress.
High partial credit: (4 marks)	_	Fully correct substitution (<i>a</i> and <i>r</i>) into S_n formula and finds $1 - \left(\frac{3}{4}\right)^n = 0.95$, but
	_	fails to finish <u>or</u> finishes incorrectly. Finds $n = 10.413343$, but fails to round up to $n = 11$.

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.

These scales and the marks that they generate are summarised in the following table:

Scale label	Α	В	С	D
No. of categories	2	3	4	5
5 mark scale		0, 2, 5	0, 2, 4, 5	0, 2, 3, 4, 5
10 mark scale			0, 4, 7, 10	0, 4, 6, 8, 10
15 mark scale				0, 5, 9, 12, 15

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving ① incorrect rounding, ② omission of units, ③ a misreading that does not oversimplify the work or ③ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale **10C*** indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- The * penalty is not applied for the omission of units in currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.

Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

<u>Secti</u>	Section A				Section B				
Q.1	(a)	(i) (ii)	5C (0, 2, 4, 5) 5C (0, 2, 4, 5)		Q.7	(a)	(i) (ii)	10C* (0, 4, 7, 10) 5B* (0, 2, 5)	
	(b)	(111)	5C(0, 2, 4, 5) 10D(0, 4, 6, 8, 10)			(b)	(i) (ii)	10D(0, 4, 6, 8, 10) 5C(0, 2, 4, 5)	
	(0)		10D (0, 4, 0, 8, 10)	25			(II) (iii)	5C(0, 2, 4, 5) 5C(0, 2, 4, 5)	
						(c)	(i) (ii)	10D* (0, 4, 6, 8, 10) 5D (0, 2, 3, 4, 5)	
0.2	(a)		10D (0 4 6 8 10)						50
~·-	(b)		$5C^*(0, 2, 4, 5)$						
_	(c)		10D* (0, 4, 6, 8, 10)						
				25	Q.8	(a)	(i)	10D (0, 4, 6, 8, 10)	
							(ii)	5C (0, 2, 4, 5)	
						(L)	(iii)	5C(0, 2, 4, 5)	
0.2	(a)		5C(0, 2, 4, 5)			(D)	(1)	10D(0, 4, 6, 8, 10)	
Q.3	(a) (b)		5C(0, 2, 4, 5) 5C(0, 2, 4, 5)				(II) (iii)	5C(0, 2, 4, 5) 5C(0, 2, 4, 5)	
	(U) (C)		15D(0, 2, 4, 3)				(iiv)	5C(0, 2, 4, 5) 5C(0, 2, 4, 5)	
	(0)		15D (0, 5, 7, 12, 15)	25			(v)	5D (0, 2, 3, 4, 5)	
									50
Q.4	(a)		10D (0, 4, 6, 8, 10)						
	(b)		5C* (0, 2, 4, 5)		Q.9	(a)	(i)	10D (0, 4, 6, 8, 10)	
	(c)		10D (0, 4, 6, 8, 10)				(ii)	10D (0, 4, 6, 8, 10)	
				25			(iii)	5D (0, 2, 3, 4, 5)	
							(iv)	5C(0, 2, 4, 5)	
						(b)	(v)	$10D^{*}(0, 4, 6, 8, 10)$ $10D^{*}(0, 4, 6, 8, 10)$	
0.5	(a)	(i)	5C(0, 2, 4, 5)			(0)		10D (0, 4, 0, 0, 10)	50
Q	(4)	(ij)	10D (0, 4, 6, 8, 10)						20
	(b)	()	10D (0, 4, 6, 8, 10)						
				25					
Q.6	(a)	(i)	10D (0, 4, 6, 8, 10)						
		(ii)	5C (0, 2, 4, 5)						
	(b)		$10D^*(0, 4, 6, 8, 10)$	25					

Current Marking Scheme

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

Copyright

All rights reserved. This marking scheme and corresponding papers(s) are protected by Irish (EU) copyright law. Reproduction and distribution of these materials or any portion thereof without the written permission of the publisher is prohibited except for the immediate use within a classroom.

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

General Instructions

There are **two** sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all nine questions.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Section A	A	Concepts and Skills	150 marks
Answer all s	six questions from this secti	ion.	
Question 1			(25 marks)
1(a)	Orla and Liam play a gam The first person to get a ' find the probability that:	ne that consists of tossing an unbiased coin heads' is the winner. If Orla tosses first,	
	(i) Liam wins the gar	ne on his first toss,	(5C)
		$P(\text{Liam wins on 1st toss}) = P(\text{Orla lose})$ $= \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{4} \underline{\text{or}} 0.23$	s on 1st toss) + <i>P</i> (Liam wins on 1st toss)
	Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks) –	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Liam wins, <i>e.g.</i> ' $P(\text{Orla loses on 1st toss})$ + $P(\text{Liam wins on 1st toss}) \text{ or } P(\text{L}, \text{W})'$ or similar and stops. Correct probabilities chosen, but incorrect operator used.
		High partial credit: (4 marks) –	Correct probabilities and operator chosen, <i>i.e.</i> $P(\text{Liam wins}) = \frac{1}{2} \times \frac{1}{2}$, but fails to express as a single fraction <u>or equivalent</u> .
2018 1 L 17/20 M	S 11/80	Page 44 of 79	

1 (a)	(cont'	'd.)					
	(ii)	Orla wins the game of	on her second toss,				(5C)
			P(Orla wins on 2nd	toss) = = =	$P(\text{Ord})$ $\frac{1}{2} \times \frac{1}{2}$ $\frac{1}{8} \text{or}$	a loses of + $P(O)$ $\frac{1}{2} \times \frac{1}{2}$ 0.125	on 1st toss) + P (Liam loses on 1st toss) rla wins on 2nd toss)
	Scale	5C (0, 2, 4, 5)	Low partial credit	: (2 mai	·ks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Orla wins, <i>e.g.</i> ' $P(Orla loses on 1st toss)$ + $P(Liam loses on 1st toss) + P(Orlawins on 2nd toss)' or similar and stops.Correct probabilities chosen, but incorrectoperator used.$
			High partial credit	: (4 ma	rks)	_	Correct probabilities and operator chosen, <i>i.e.</i> $P(\text{Orla wins}) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$, but fails to express as a single fraction <u>or equivalent</u> .

(iii) Orla	wins	the	game.
------------	------	-----	-------

	P(Orla wins)				
		=	P(Orla wins on 1st toss) + P(Orla wins on 2nd toss) + $P(\text{Orla wins on 3rd toss}) +$		
		=	$\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \dots$		
		=	$\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right)$	$\left(\frac{1}{4}\right) + \frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right) + \frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right) + \dots$	
\Rightarrow	Infinite geometric pr	rogressi	on		
	S_{∞}	=	$\frac{a}{1-r}$	$a = \frac{1}{2}, r = \frac{1}{4}$	
\Rightarrow	P(Orla wins)	=	$\frac{\frac{1}{2}}{1-\frac{1}{4}}$		
		=	$\frac{4}{6}$ or $\frac{2}{3}$	$\frac{2}{3}$ 0.6666666	
Scale 5C (0, 2, 4, 5)	Low partial credit:	(2 mar	ks)	- Any relevant first step, <i>e.g.</i> writes down correct explanation of probability that Orla wins, <i>e.g.</i> ' <i>P</i> (Orla wins on 1st toss) + <i>P</i> (Orla wins on 2nd toss) + <i>P</i> (Orla wins on 3rd toss) +' <u>or similar</u> . - Finds <i>P</i> (Orla wins) = $\frac{1}{2} + \frac{1}{8} + \frac{1}{32} +$	
	High partial credit:	(4 mar	ks)	- Recognises that <i>P</i> (Orla wins) is equal to the sum of a G.P. with $a = \frac{1}{2}$ and $r = \frac{1}{4}$, but fails to find or finds incorrect S _∞ .	

(5C)

(10D)

1(b) A game of chance comprises a player spinning a 'lottery wheel'. There are 100 positions in which the ball has an equal chance of landing but there is only one chance for a player to win the top prize.

Find the minimum number of spins which Carina must attempt in order that the probability of winning the top prize at least once is no less than 25%.

$$P(\text{wins top prize}) = \frac{1}{100}$$
$$P(\text{does not win}) = 1 - \frac{1}{100}$$
$$= \frac{99}{100}$$

 \Rightarrow

 \Rightarrow *P*(Carina wins top prize at least once in *n* attempts)

= 1 - P(never wins top prize in n attempts)

1

100

		=	$1 - \left(\frac{99}{100}\right)^n$
		=	0.25
⇒	$1 - \left(\frac{99}{100}\right)^n$	=	0.25
⇒	$\left(\frac{99}{100}\right)^n$	=	1 - 0.25
		=	0.75
\Rightarrow	n	=	$\log_{\frac{99}{100}}(0.75)$
		=	28.624125
\Rightarrow	n	=	29

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct explanation of probability, <i>e.g.</i> ' <i>P</i> (Carina wins at least once) = $1 - P$ (never wins top prize) <u>or similar and stops</u> . Finds <i>P</i> (does not win) = $1 - \frac{1}{100} \text{ or } \frac{99}{100}$.
Mid partial credit: (6 marks)	_	Finds <i>P</i> (Carina wins top prize) and finds $1 - \left(\frac{99}{100}\right)^n = 0.25 \text{ or } 1 - \left(\frac{99}{100}\right)^n > 0.25$ <u>and stops or</u> fails to progress.
High partial credit: (8 marks)	_	Finds <i>P</i> (Carina wins top prize), <i>i.e.</i> $1 - \left(\frac{99}{100}\right)^n = 0.25 \text{ or } 1 - \left(\frac{99}{100}\right)^n > 0.25$ with substantive work towards finding <i>n</i> , but fails to finish or finishes incorrectly. Finds $n = 28.624125$, but fails to round up to $n = 29$.

(25 marks)

(10D)

The diagram below shows a sector of a circle with centre O and radius 20 cm. A circle with centre Cand radius x cm lies within the sector and touches it at P, Q and R. S is another point on the circle. $|\angle POR| = 1.29$ radians.

By considering the triangle *POC*, show that x is equal to 7.5 cm, correct to one decimal place. 2(a)

 $|\angle POC|$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

х

С Consider $\triangle POC$ 1.29 = 2 20 - x0.645 rads = Using trigonometry 0 |PC| $\sin |\angle POC|$ = |OC||PC|= х |OC|= 20 - xх $\sin 0.645$ = 20 - xx 0.601198... = 20 - x(20 - x)(0.601198...)= = 12.023968... - 0.601198...xx + 0.601198...x12.023968... = 1.601198...*x* 12.023968... = 12.023968... х = 1.601198... 7.509355... =

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	-	Any relevant first step, <i>e.g.</i> writes down <u>or</u> indicates on diagram that $\triangle POC$ is a right-angled triangle with $ \angle CPO = 90^\circ$. Finds $ \angle POC = 0.645$ rads. Finds $ OC = 20 - x$. Some correct substitution into trig ratio (sin) <u>and stops or</u> fails to progress.
	Mid partial credit: (6 marks)	_	Finds $\sin 0.645 = \frac{x}{20 - x}$ and stops
			<u>or</u> fails to progress.
	High partial credit: (8 marks)	_	Finds 0.601198 = $\frac{x}{20 - x}$ with some
			work towards finding <i>x</i> , but fails to finish <u>or</u> finishes incorrectly.

7.5 cm

≅

fails to evaluate <u>or</u> evaluates incorrectly. Finds both areas separately $[\frac{1}{2}(20)^2(1.29)]$

and $\pi(7.5)^2$] with one error/omission,

but finishes correctly.

(5C*)

2(b)	Hence, find the area of the region which is inside the sector but outside the circle
	correct to three decimal places.

	Area of sector	=	$\frac{1}{2}r^2\theta$	θ in radians
		=	$\frac{1}{2}(20)^2(1\cdot 29)$	
		=	258 cm^2	
	Area of circle	= = =	πr^2 $\pi (7.5)^2$ $176.714586 cm^2$	
\Rightarrow	Area outside circle	= = =	258 – 176·714586 81·285413 cm ² 81·285 cm ²	
Scale 5C* (0, 2, 4, 5)	Low partial credit:	(2 marl	cs) – Any releva correct rele a sector <u>or</u> substitutior – Finds Area – Finds Area	nt first step, <i>e.g.</i> writes down want formula for the area of a circle with some correct into formula. of sector [ans. 258]. of circle [ans. 176.714586].
	High partial credit:	(4 mar	ks) – Finds area	$=\frac{1}{2}(20)^2(1\cdot 29) - \pi(7\cdot 5)^2$, but

Deduct 1 mark off correct answer only **0** if final answer is not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('cm²') - apply only once to each section (a), (b), (c), *etc.* of question.

_

(10D*)

2(c) Find the perimeter of the region *PORS* bounded by the arc *PSR* and the lines *OP* and *OR*. Give your answer correct to the nearest cm.

Perimeter of the region PORS $|PO| + |OR| + |\operatorname{arc} RSP|$ = Consider $\triangle POC$ Using Pythagoras' theorem $|\operatorname{Hyp}|^2$ $|OC|^2$ $|\operatorname{Opp}|^{2} + |\operatorname{Adj}|^{2}$ $|\operatorname{CP}|^{2} + |\operatorname{PO}|^{2}$ = = \Rightarrow |OC|= 20 - 7.512.5 = |CP|= 7.5 $|PO|^2$ $(12.5)^2 - (7.5)^2$ = \Rightarrow $156 \cdot 25 - 56 \cdot 25$ = 100 = $\sqrt{100}$ |PO| \Rightarrow = 10 cm = Also |OR| = 10 cm $|\angle RCP|$ $2|\angle OCP|$ = $\pi - \frac{\pi}{2} - 0.645$ $|\angle OCP|$ = $\frac{\pi}{2} - 0.645$ = $2(\frac{\pi}{2} - 0.645)$ = \Rightarrow $|\angle RCP|$ $\pi - 1.29$ = = 1.851592... (rads) | arc RSP | rθ = (7.5)(1.851592...)= 13.886944... cm = Perimeter of the region PORS 10 + 10 + 13.886944...33.886944... = 34 cm \cong Scale 10D* (0, 4, 6, 8, 10) Low partial credit: (4 marks) Any relevant first step, *e.g.* writes down correct relevant formula for Pythagoras' theorem or for the length of an arc (in rads) with some correct substitution into formula. Indicates Perimeter of the region PORS $= |PO| + |OR| + |\operatorname{arc} RSP|$ and stops. Correct substitution into formula for Pythagoras' theorem (not stated), but fails to evaluate or evaluates incorrectly. Writes down that $|\angle RCP| = 2|\angle OCP|$ or equivalent. Mid partial credit: (6 marks) Finds correct value of |PO| or |OR| only. _ Finds correct value of | arc RSP | only. Finds correct value of |PO| (or |OR|) High partial credit: (8 marks) or | arc *RSP* | with substantive work towards finding the value of other length, but fails to finish or finishes incorrectly. Finds correct value of |PO| (or |OR|) and | arc RSP |, but fails to find perimeter or finds incorrect value of perimeter.

* Deduct 1 mark off correct answer only if final answer is not rounded <u>or</u> incorrectly rounded - apply only once to each section (a), (b), (c), *etc.* of question.

(5C)

Two circles, k_1 and k_2 , touch externally.

0

3 (a)	The equation of the circle k_1 is $x^2 + y^2 - 6x + 2y - 15 = 0$.
	Find the centre and radius of k_1 .

Centre of k_1 :				
General equation of a circle:				
$s: x^2 + y^2 + 2gx + 2fy + c = 0$ with centre $(-g, -f)$)			
$k_1: \qquad x^2 + y^2 - 6x + 2y - 15 = 0 x^2 + y^2 + 2(-3)x + 2(1)y - 15 = 0$				
Centre $(-g, -f) = (3, -1)$				

$$\Rightarrow$$
 Centre (-g, -j

Radius of k_1 :

$$r_{1}(\text{radius of } k_{1}) = \sqrt{g^{2} + f^{2} - c}$$

$$= \sqrt{(-3)^{2} + (1)^{2} - (-15)}$$

$$= \sqrt{9 + 1 + 15}$$

$$= \sqrt{25}$$

$$= 5$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> effort at relating one or more coefficients of given equation to general equation of a circle. Effort at completing square(s).
High partial credit: (4 marks)		Finds either centre <u>or</u> radius correctly. Substantive work towards finding centre <u>and</u> radius, but with one critical error, <i>e.g.</i> centre $(-3, -1)$ and finds radius with incorrect value.

(5C)

3(b) The centres of the two circles lie on the line 4x + 3y - 9 = 0. The radius of circle k_2 is 10 units. If the co-ordinates of the centre of circle k_2 are expressed in the form (-g, -f), show that $(3 + g)^2 + (f - 1)^2 = 225$.

Let c_1 be the centre of k_1 and c_2 be the centre of k_2

$$r_{2}(\text{radius of } k_{2}) = 10$$

$$c_{2}(\text{centre of } k_{2}) = (-g, -f)$$

$$r_{1}(\text{radius of } k_{1}) = 5$$
... answer from part (a)
$$c_{1}(\text{centre of } k_{1}) = (3, -1)$$
... answer from part (a)
$$r_{1} + r_{2} = |c_{1}c_{2}|$$

$$\Rightarrow 5 + 10 = \sqrt{(3 - (-g))^{2} + (-1 - (-f))^{2}}$$

$$\Rightarrow 15 = \sqrt{(3 + g)^{2} + (-1 + f)^{2}}$$

$$= \sqrt{(3 + g)^{2} + (f - 1)^{2}} = 15^{2}$$

$$= 225$$

** Accept students' answers for r_1 and c_1 from part (a) if not oversimplified.

Low partial credit: (2 marks)	_ _ _	Any relevant first step, <i>e.g.</i> writes down that $r_1 + r_2 = c_1c_2 $ or similar. Finds correct value of $r_1 + r_2$ [ans. 15]. Some correct substitution into distance formula to find $ c_1c_2 $ and stops or fails to progress.
High partial credit: (4 marks)	_	Substitutes correctly into $r_1 + r_2 = c_1c_2 $, but fails to find correct expression.

Scale 5C (0, 2, 4, 5)

(15D)

3(c) Hence, or otherwise, find the possible equations of k_2 .

$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	(-g, -f) 4(-g) + 3(-f) - 9 3f f	€ = =	4x + 3y - 9 = 0 $-4g - 9$ $-4g - 9$ 2	0	①		
\Rightarrow	225Substituting ① into225	= ②: =	$(3+g)^{2} + (f)^{2}$ $(3+g)^{2} + (-1)^{2}$	$(-1)^2$ $\frac{4g-9}{3} = -\frac{1}{3}$	②	from	part (b)
		=	$g^2 + 6g + 9 +$ $g^2 + 6g + 9 +$	$\frac{(-4g - 3)}{3}$	$(\frac{12}{9})^2$		
$\begin{array}{c} \uparrow\\ $	225(9) 2,025 $25g^2 + 150g - 1,800$ $g^2 + 6g - 72$ (g - 6)(g + 12)	= = = = =	$(g^{2} + 6g + 9)(g^{2} + 54g + 8)(g^{2} + 6)(g^{2} + 6)(g^$	(9) + 16g 31 + 16g	$g^2 + 96g + 14$ $g^2 + 96g + 14$	14 4	
\Rightarrow	g-6	=	0	\Rightarrow	<i>g</i> + 12	=	0
\Rightarrow	g	=	6 -4a - 9	\Rightarrow	g	=	-12
⇒	f	= = =	$\frac{-\frac{18}{3}}{-\frac{-4(6)-9}{3}}$ $\frac{-33}{3}$ -11	⇒	f	= = =	$\frac{-4(-12) - 9}{3}$ $\frac{-4(-12) - 9}{3}$ $\frac{39}{3}$ 13
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	c_2 : (-6, 11) k_2 : $(x + 6)^2 + (y - 11)$	$)^{2} = 10$	0	$\stackrel{\Rightarrow}{\Rightarrow}$	c_2 : (12, -13) k_2 : (x - 12)	$(y^{2})^{2} + (y + 1)^{2}$	$(3)^2 = 100$
Scale 15D (0, 5, 9, 12, 15)	Low partial credit:	(5 mar	ks) –	Any re (- <i>g</i> , - <i>f</i>	levant first st) correctly in	ep, <i>e.g.</i> s to $4x + 3$	ubstitutes $y - 9 = 0$.
			_	Finds <i>f</i> and sto	$f = \frac{-4g - 9}{3}$ <u>ps or</u> fails to	$\frac{\text{or } g}{\text{progress}} = \frac{-3}{-3}$	$\frac{f-9}{4}$
	Mid partial credit:	(9 marl	<s) th="" –<=""><th>Substit 225 = (correct</th><th>utes $f \text{ or } g \text{ co}$ $(3+g)^2 + (f - g)^2$ quadratic equivalent</th><th>orrectly in – 1)², but uation.</th><th>nto equation fails to find</th></s)>	Substit 225 = (correct	utes $f \text{ or } g \text{ co}$ $(3+g)^2 + (f - g)^2$ quadratic equivalent	orrectly in – 1) ² , but uation.	nto equation fails to find
	High partial credit:	: (12 ma	arks) – – –	Find tw but fail second Find on and cor Finds b	vo correct val s to find corr variable. Ily one correct responding va both variables	lues of fin espondin t value of alue of sec s, but fails	rst variable, g values of first variable cond variable. s to find <u>or</u>
				mus m	contect equal		icies.

(25 marks)

(10D)

4(a) Find the equation of the line l through the point (-3, 2), which divides the line segment (-6, 2) to (-3, -4) internally in the ratio 1:2.

> Line segment (-6, 2) to (-3, -4) divided internally in the ratio 1:2 (x_1, y_1) (x_2, y_2) $k_1: k_2$ $k_1: k_2$

$$P(x, y) = \left(\frac{k_1 x_2 + k_2 x_1}{k_1 + k_2}, \frac{k_1 y_2 + k_2 y_1}{k_1 + k_2}\right)$$
$$= \left(\frac{1(-3) + 2(-6)}{1 + 2}, \frac{1(-4) + 2(2)}{1 + 2}\right)$$
$$= \left(\frac{-15}{3}, \frac{0}{3}\right)$$
$$= (-5, 0)$$

Line *l* contains (-3, 2) and (-5, 0) $y_2 - y_2$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\Rightarrow m_l \text{ (slope of line } l) = \frac{0 - 2}{-5 - (-3)}$$

$$= \frac{-2}{-2}$$

$$= 1$$

	Equation of l (-3, 2), $m_l = 1$				Equation of $(-5, 0), m_l =$	<i>l</i> = 1	
	$y - y_1$	=	$m(x-x_1)$		$y - y_1$	=	$m(x-x_1)$
\Rightarrow	y – (2)	=	1(x - (-3))	\Rightarrow	y - (0)	=	1(x - (-5))
\Rightarrow	y-2	=	<i>x</i> + 3	\Rightarrow	У	=	<i>x</i> + 5
\Rightarrow	x - y + 5	=	0	\Rightarrow	x - y + 5	=	0

10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct relevant formula for ratio with some correct substitution into formula. Identifies correct relevant formula for slope <u>or</u> equation of a line with some correct substitution of $(-3, 2)$ into formula.
	Mid partial credit: (6 marks)		Substitutes correctly into ratio formula, <u>and stops or</u> fails to progress. Finds one ordinate only (correct). Correct co-ordinates, but no work shown.
	High partial credit: (8 marks)	_	Finds correct slope of line l , but fails to find equation of line $l \text{ or }$ finds incorrect equation of line l . Finds equation of line l with one error/omission, but finishes correctly.

Scale

4(b) Find the co-ordinates of the points where l cuts the *x*-axis and the *y*-axis and hence, find the area of the triangle formed by l and the two axes.

(5C*)

	Co-ordinates of poi	ints when	re <i>l</i> cuts the <i>x</i> -axis and <i>y</i> -axis
	<i>l</i> : $x - y + 5$	=	0
	<u>x-axis</u>		
\Rightarrow	у	=	0
\Rightarrow	x - 0 + 5	=	0
\Rightarrow	x	=	-5
\Rightarrow	cuts the x-axis at (-	-5, 0)	
	<u>y-axis</u>		
\Rightarrow	x	=	0
\Rightarrow	0 - y + 5	=	0
\Rightarrow	-y	=	-5
\Rightarrow	У	=	5
\Rightarrow	cuts the y-axis at (0), 5)	

0

0

Area of triangle formed by l and the two axes

$$\Rightarrow \text{ Area of } \Delta = \frac{1}{2} |x_1 y_2 - x_2 y_1|$$

= $\frac{1}{2} |(-5)(5) - (0)(0)|$
= $\frac{1}{2} |-25|$
= $\frac{1}{2} (25)$
= $12 \cdot 5 \text{ units}^2$

, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct relevant formula for the area of a triangle with some correct substitution. Finds either correct x or y intercept and stops or fails to progress.
	High partial credit: (4 marks)	_	Finds both x and y intercepts correctly, but fails to find or finds incorrect area of triangle. Finds area of triangle with one incorrect intercept/error/omission, but finishes correctly.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('units²') - apply only once to each section (a), (b), (c), *etc.* of question.

(10D)

4(c) A second line, y = mx + c, where *m* and *c* are positive constants, passes through (-3, 2) and forms a triangle with the axes of equal area to that in part (**b**) above. Find the equation of this line.

		У	=	mx + c	
0		(-3, 2)	∈	v = mx + c	
	\Rightarrow	-3m + c	=	2	
	\Rightarrow	C	=	$\frac{1}{3}m + 2$	①
•	,		0		
Ø		Intercepts x-axis @	$y \equiv 0$		
		y	=	mx + c	
	\Rightarrow	0	=	mx + c	
	\Rightarrow	mx	=	$-\mathcal{C}$	
	\Rightarrow	x	=	-c	
				т	
	\Rightarrow	cuts the x-axis at $(\frac{-n}{n})$	$\frac{c}{n}$, 0)		
		Intercepts y-axis @	x = 0		
		y	=	m(0) + c	
	\Rightarrow	v	=	С	
	\Rightarrow	cuts the v-axis at (0.	<i>c</i>)		
		, , , , , , , , , , , , , , , , , , ,		1	
€		Area of Δ	=	$\frac{1}{2} x_1y_2 - x_2y_1 $	
				2	
			=	$\frac{1}{2} \left \frac{-c}{(-c)}(c) - (0)(0) \right $	
				2 m	
			=	C^2	
				2 <i>m</i>	
			=	12.5	answer from part (b)
		c^2			
	\Rightarrow	$\frac{c}{2}$	=	12.5	
		2m			
	\Rightarrow	c^2	=	12.5(2m)	
			=	25 <i>m</i>	②
4		Substituting ① into	0:		
		$(3m+2)^2$	=	25m	
	\Rightarrow	$9m^2 + 12m + 4$	=	25 <i>m</i>	
	\Rightarrow	$9m^2 - 13m + 4$	=	0	
	\Rightarrow	(9m-4)(m-1)	=	0	
	_	0	_	$0 \rightarrow$	m 1 – 0
	\rightarrow	9 <i>m</i> – 4	_	$\begin{array}{ccc} 0 & \longrightarrow \\ 1 & \longrightarrow \end{array}$	m-1 $=$ 0
	\Rightarrow	т	=	$\frac{+}{0}$	m = 1
				9 ⇒	slope of line <i>l</i>
		С	=	3m + 2	①
	\rightarrow	C	_	$3(\frac{4}{2}) + 2$	
	\rightarrow	t	_	9/12	
				10	
			=	3	
•					
9		Equation of line			
		У	=	mx + c	
	\Rightarrow	у	=	$\frac{4}{-x} + \frac{10}{-x} = \frac{10}{-x} + \frac{10}$	9y + 30 = 0
		-		9 3 -	•

4(c) (cont'd.)

** Accept students' answers for Area of Δ from part (b) if not oversimplified.

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> substitutes $(-3, 2)$ correctly into $y = mx + c$. Finds either correct x or y intercept and stops or fails to progress.
Mid partial credit: (6 marks)	_	Substitutes correctly into area of triangle
		formula and finds $\frac{c^2}{2m} = 12.5 \text{ or } c^2 = 25m$,
		but fails to find correct quadratic equation.
High partial credit: (8 marks)	_	Finds correct slope, <i>i.e.</i> $m = \frac{4}{9}$, but fails
	_	to find equation of line <u>or</u> finds incorrect equation of line. Finds equation of line with one error/omission, but finishes correctly.

(25 marks)

(5C)

5(a) A jury of 12 people is to be selected from a panel of 8 men and 8 women.

(i) In how many ways can the jury be selected?

=	8 + 8 12
=	$\begin{pmatrix} 16\\12 \end{pmatrix}$
=	$^{16}C_{12}$
=	$\frac{16!}{12! (16 - 12)!}$
=	$\frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2 \times 1}$
=	$\frac{43,680}{24}$
=	1,820

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down '# total juries = $\binom{16}{12} \underline{\text{or}}^{16}C_{12}$ ' and stops
	_	<u>or</u> fails to progress. Writes down <u>or</u> evaluates correctly ${}^{16}P_{12}$ [ans. $16 \times 15 \times 14 \times 13$ <u>or</u> 43,680].
High partial credit: (4 marks)	_	Finds $\frac{16!}{12!(16-12)!}$ or $\frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2 \times 1}$, but fails to evaluate or evaluates incorrectly.

(10D)

5(a) (cont'd.)

(ii) Find the probability that the jury selected has more women than men.

	More women than	nen	
\Rightarrow	Jury composition	=	(8 women + 4 men) or (7 women + 5 men)
	# juries	=	$\left[\binom{8}{8} \times \binom{8}{4}\right] + \left[\binom{8}{7} \times \binom{8}{5}\right]$
		=	$\begin{bmatrix} {}^{8}C_{8} \times {}^{8}C_{4} \end{bmatrix} + \begin{bmatrix} {}^{8}C_{7} \times {}^{8}C_{5} \end{bmatrix}$
		=	$\left[1 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}\right] + \left[8 \times \frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right]$
		=	$[1 \times 70] + [8 \times 56]$
		=	70 + 448
		=	518
	# total juries	=	1,820 answer from part (a)(i)
\Rightarrow	<i>P</i> (more women)	=	$\frac{518}{1,820}$
		=	$\frac{37}{130}$ or 0.284615

** Accept students' answers for # total juries from part (a)(i) if not oversimplified.

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	-	Any relevant first step, $e.g.$ writes down
			# juries = $\binom{8}{8} \times \binom{8}{4}$, ${}^{8}C_{8} \times {}^{8}C_{4}$, $\binom{8}{7} \times \binom{8}{5}$
			or ${}^{8}C_{7} \times {}^{8}C_{5}$ (evaluated or not).
		_	Finds $\begin{bmatrix} 8\\8 \end{bmatrix} \times \begin{bmatrix} 8\\4 \end{bmatrix} \times \begin{bmatrix} 8\\7 \end{bmatrix} \times \begin{bmatrix} 8\\5 \end{bmatrix}$, but
			fails to evaluate or evaluates incorrectly.
		-	Writes downs <u>or</u> evaluates correctly
			$[{}^{\circ}P_8 \times {}^{\circ}P_4] \times [{}^{\circ}P_7 \times {}^{\circ}P_5].$
	Mid partial credit: (6 marks)	_	Finds $\begin{bmatrix} \binom{8}{8} \times \binom{8}{4} \end{bmatrix} + \begin{bmatrix} \binom{8}{7} \times \binom{8}{5} \end{bmatrix}$, but
			fails to evaluate or evaluates incorrectly.
		-	Finds $\begin{bmatrix} 8\\8 \end{bmatrix} \times \begin{bmatrix} 8\\4 \end{bmatrix} \times \begin{bmatrix} 8\\7 \end{bmatrix} \times \begin{bmatrix} 8\\5 \end{bmatrix}$ and
			evaluates correctly [ans. 31,360].
	High partial credit: (8 marks)	_	Finds $\#$ juries = 518, but fails to find <u>or</u> finds incorrect probability.

5(b) A Maths teacher tells her class of 23 students that "There is a greater than 50% chance of two or more of you having the same birthday." Do you agree with her? Justify your answer by calculation.

(10D)

P(2 or more have the sam)	e birthday)
----------------------------	-------------

=	1 - P(none have the same birthday)
=	$1 - \left[\left(\frac{365}{365}\right) \left(\frac{364}{365}\right) \left(\frac{363}{365}\right) \left(\frac{362}{365}\right) \dots \left(\frac{344}{365}\right) \left(\frac{343}{365}\right) \right]$
=	$1 - \frac{(365)(364)(363)(362) \dots (344)(343)}{365^{23}}$
=	1 - 0.492702
=	0.507279
0.507279 > 50%, the teacher is correct	

Scale 10D (0, 4, 6, 8, 10)

as

_	Any relevant first step, <i>e.g.</i> writes down ' <i>P</i> (2 or more have the same birthday) = 1 – <i>P</i> (none have the same birthday)' or similar and stops. Finds $\left(\frac{365}{365}\right) \left(\frac{364}{365}\right) \left(\frac{363}{365}\right) \dots \left(\frac{343}{365}\right)$, but
	fails to evaluate <u>or</u> evaluates incorrectly.
_	Finds $P(2 \text{ or more have the same birthday})$ =1 - $\left[\left(\frac{365}{365} \right) \left(\frac{364}{365} \right) \dots \left(\frac{343}{365} \right) \right]$, but fails
	to evaluate $\underline{\text{or}}$ evaluates incorrectly.
-	Finds $\left(\frac{363}{365}\right) \left(\frac{364}{365}\right) \left(\frac{363}{365}\right) \dots \left(\frac{343}{365}\right)$, and
	evaluates correctly [ans. 0.492/02].
-	Finds correct $P(2 \text{ or more have same birthday})$ [ans. 0.507279], but no conclusion <u>or</u> incorrect conclusion given.
	-

(i) Let |AB| = 2l. Find an equation for the sum of the areas of the four regions, in terms of *x* and *l*, and hence, show that $x = \frac{2l}{3}$.

0

(10D)

(25 marks)

Area of region
$$\textcircled{O}$$
 = Area of $\triangle BMP$
= $\frac{1}{2}(base \times \bot height)$
= $\frac{1}{2}(l)(x)$
= $\frac{1}{2}lx$
Area of region \textcircled{O} = Area of $\triangle BCD$ – Area of $\triangle BMP$
= $\frac{1}{2}(2l)(2l) - \frac{1}{2}lx$
= $2l^2 - \frac{1}{2}lx$
Area of region \textcircled{O} = Area of $\triangle ABM$ – Area of $\triangle BMP$
= $\frac{1}{2}(2l)(l) - \frac{1}{2}lx$
= $l^2 - \frac{1}{2}lx$
Area of region \textcircled{O} = Area of $\triangle ABM$ – Area of $\triangle BMP$
= $\frac{1}{2}(2l)(l) - \frac{1}{2}lx$
= $l^2 - \frac{1}{2}lx$
Area of region \textcircled{O} = Area of $\triangle APD$
= $\frac{1}{2}(2l)(2l - x)$
= $2l^2 - lx$
Equation for the sum of the areas of the four regions
= Area of regions $\textcircled{O} + \textcircled{O} + \textcircled{O} + \textcircled{O}$
= $\frac{1}{2}lx + 2l^2 - \frac{1}{2}lx + l^2 - \frac{1}{2}lx + 2l^2 - lx$

0

 $= 5l^2 - \frac{3}{2}lx$ Total area of square =(2l)(2l) $4l^2$ = $5l^2 - \frac{3}{2}lx$ $4l^2$ $5l^2 - 4l^2$ = \Rightarrow $\frac{3}{2}lx$ = \Rightarrow l^2 $\frac{2}{3}l$ = = \Rightarrow х

6(a) (i) (cont'd.)

Scale	10D	(0 4	6	8	10)
Scale	10D	(0, 4,	, U,	о,	10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> finds correct area of one <u>or</u> two regions. Finds Total area of square [ans. $4l^2$].
Mid partial credit: (6 marks)	_	Finds correct equation for the sum of the areas of all four regions [ans. $5l^2 - \frac{3}{2}lx$] and stops or fails to progress.
High partial credit: (8 marks)	_	Equates the sum of the areas to the Total area of square, <i>i.e.</i> $5l^2 - \frac{3}{2}lx = 4l^2$, but fails to finish <u>or</u> finishes incorrectly.

(ii) Hence, find the ratio of the areas of the four regions.

Area of region ①	=	$\frac{1}{2}lx$		
	=	$\frac{1}{2}l(\frac{2}{3}l)$	=	$\frac{1}{3}l^2$
Area of region 2	=	$2l^2 - \frac{1}{2}lx$		
	=	$2l^2 - \frac{1}{2}l(\frac{2}{3}l)$	=	$\frac{5}{3}l^2$
Area of region 3	=	$l^2 - \frac{1}{2}lx$		
	=	$l^2 - \frac{1}{2}l(\frac{2}{3}l)$	=	$\frac{2}{3}l^2$
Area of region ④	=	$2l^2 - lx$		
	=	$2l^2 - l(\frac{2}{3}l)$	=	$\frac{4}{3}l^2$

0

0

Ratio of areas of region ① : region ② : region ③ : region ④ = $\frac{1}{3}l^2:\frac{5}{3}l^2:\frac{2}{3}l^2:\frac{4}{3}l^2$ = 1:5:2:4

** Accept students' answers for the area of each region from part (a)(i) if not oversimplified.

Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	-	Any relevant first step, <i>e.g.</i> finds correct area of one <u>or</u> two regions in terms of l^2 .
	High partial credit: (4 marks)	-	Finds correct area of all four regions in terms of l^2 , but fails to find ratio <u>or</u> finds incorrect ratio.

(5C)

6(b) The diagram shows the support framework for the roof configuration of a new house. The design is based on a larger triangle which is subdivided into five identical triangles that are similar to the larger triangle.

Each of the frameworks, or *roof trusses*, is constructed using timber. The quantity surveyor for the project needs to determine the total length of timber required for each truss.

Given that the shortest side of each of the smaller triangles in the design is 2.5 m, find the total length of timber required to make each truss.

Give your answer in the form $a + b\sqrt{c}$, where a, b and $c \in \mathbb{N}$.

$$\Delta DCB = \Delta DGE = \Delta GBF = \Delta FEG = \Delta EFA$$

$$|DC| = 2.5 m$$

$$|DG| = |DC|$$

$$= 2.5 m$$
also
$$|GB| = 2.5 + 2.5$$

$$= 5 m$$
Consider ΔBCD

$$\frac{Using Pythagoras' theorem}{|Hyp|^2} = |Opp|^2 + |Adj|^2$$

$$\Rightarrow |BC|^2 = |DC|^2 + |DB|^2$$

$$\Rightarrow |BC|^2 = (2.5)^2 + (5)^2$$

$$= 6.25 + 25$$

$$= 31.25$$

$$= \frac{125}{4}$$

$$\Rightarrow |BC| = \sqrt{\frac{125}{4}} = \frac{5\sqrt{5}}{2} m$$
Total length of timber required
$$= 4(5) + 2(2.5) + 4(\frac{5\sqrt{5}}{2})$$

$$= 20 + 5 + 10\sqrt{5}$$

Scale 10D (0, 4, 6, 8, 10*)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down formula for Pythagoras' theorem with some correct substitution into formula. Finds correct value of $ DB $ [ans. 5].
	Mid partial credit: (6 marks)	_	Finds correct value of $ BC $ [ans. $\frac{5\sqrt{5}}{2}$ or
			equivalent] and stops or fails to progress.
	High partial credit: (8 marks)	_	Finds correct value of $ BC $ and almost correct total length, but includes one error/omission, <i>e.g.</i> one extra/missing side in answer.

 $25 + 10\sqrt{5}$ m

Deduct 1 mark off correct answer only for the omission of or incorrect use of * units ('units²') - apply only once to each section (a), (b), (c), *etc*. of question.

=

=

(10D*)

Section B

Contexts and Applications

Answer all three questions from this section.

0

0

Question 7

Mean sea level is the midpoint between high tide and low tide and it is used as a datum from which all altitudes are measured. On a particular day, mean sea level in a boating marina first occurs at midnight (i.e. t = 0). The expected depth of water in the marina, in metres, can be modelled using the trigonometric function:

$$h(t) = 1.46 \sin\left(\frac{\pi}{6}t\right) + 1.56,$$

where *t* is the time in hours from midnight and $\left(\frac{\pi}{6}t\right)$ is expressed in radians.

 $h_{\rm high\ tide}$

 \Rightarrow

7(a) (i) Find the time at which the first high tide occurs and the depth of the water in the marina at that time.

	<u>Time</u>		
	h(t)	=	$1.46\sin\left(\frac{\pi}{6}t\right) + 1.56$
\Rightarrow	High tide occurs w	when sin	$\left(\frac{\pi}{6}t\right) = 1$
\Rightarrow	$\frac{\pi}{6}t$	=	$\sin^{-1}(1)$
\Rightarrow	$\frac{\pi}{6}t$	=	$\frac{\pi}{2}$
\Rightarrow	t	=	$\frac{6}{2}$
		=	3 hours
\Rightarrow	Time	=	03:00 <u>or</u> 3:00 <u>or</u> 3:00 am
	Depth of water		
	h(t)	=	$1.46\sin\left(\frac{\pi}{6}t\right) + 1.56$
	@ 03:00		
	$\sin\left(\frac{\pi}{6}t\right)$	=	1
\Rightarrow	$h_{ m high\ tide}$	=	1.46(1) + 1.56
		=	1.46 + 1.56

Scale 10C* (0, 4, 7, 10)

Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down that maximum/high tide occurs when $\sin A \ \underline{\text{or}} \sin\left(\frac{\pi}{6}t\right) = 1.$ Attempts to differentiate $h(t)$.
	_	Finds $\sin \frac{\pi}{6}t = 1 \text{ or } \frac{\pi}{6}t = \sin^{-1}(1)$, but
		fails to find <i>t</i> or finds incorrect <i>t</i> , <i>e.g.</i> error using radians.
High partial credit: (7 marks)	_	Finds one correct answer only (Time = $03:00 \text{ or } h_{\text{high tide}} = 3.02 \text{ m}$).

3.02 m

=

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m') - apply only once in each section (a), (b), (c), *etc.* of question.

150 marks

(50 marks)

(10C*)

(**5B***)

7(a) (cont'd.)

(ii) Find, by calculation, the period of h(t).

General equation of a sine function: f(t)= $a + b \sin ct$ 2π Period = с $1.46\sin\left(\frac{\pi}{6}t\right) + 1.56$ h(t)= $\frac{\pi}{6}$ = \Rightarrow С $\frac{2\pi}{\pi}$ \Rightarrow Period = 6 $\frac{6}{\pi}$ 2π = 12 hours = Scale 5B* (0, 2, 5)

Partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for the period of a trig function <u>or</u> general equation of a sine function with notation.
	_	Some correct use of $2\pi \underline{\text{or}} \frac{\pi}{6}$, <i>e.g.</i> $2\pi \div x$
		$\underline{\text{or }} x \div \frac{\pi}{6}, x \neq 2\pi \underline{\text{or }} \frac{\pi}{6}.$

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('hours') - apply only once in each section (a), (b), (c), *etc*. of question.

7(b)	(i)	Use the depth function, $h(t)$, to show the expected depth of water in the marina
		between midnight and the following midnight.

(10D)

$h(t) = 1.46 \sin\left(\frac{\pi}{6}t\right) + 1.56$									
Time	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	00:00
t (hours)	0	3	6	9	12	15	18	21	24
<i>h(t)</i> (m)	<u>1·56</u>	<u>3.02</u>	<u>1·56</u>	<u>0·10</u>	<u>1·56</u>	<u>3.02</u>	<u>1·56</u>	<u>0·10</u>	<u>1·56</u>

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Finds one <u>or</u> two correct depths. [Accept incorrect answer from part (a)(i)].
Mid partial credit: (6 marks)	_	Finds three, four or five correct depths.
High partial credit: (8 marks)	_	Finds six, seven or eight correct depths.

Question 7 (cont'd.)

7(b) (cont'd.)

(ii) Sketch the graph of h(t) between midnight and the following midnight.

(5C)

(iii) A large cruiser wishes to enter the marina to refuel. The boat requires a minimum water level of 1.35 m. When it is fully fuelled, the boat requires at least 1.65 m. Use your graph to estimate the time interval for which the cruiser can enter the marina in order that it is not grounded on the sea-bed if refuelling takes 4.5 hours.

(5C))
------	---

	<u>From graph:</u> Latest departure time	=	17:53 (±0:30)
	Earliest entry time	=	11:44 (± 0.30)
\Rightarrow	Time interval	=	[11:44, 17:53 – 4:30] [11:44 (±0:30), 13:23 (±0:30)]

7(b) (iii) (cont'd.)

** Accept answers based on students' graph in part (b)(ii) if not oversimplified.

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> indicates clearly depths of $1.35 \text{ m} \text{ and/or} 1.65 \text{ m}$ on the graph with corresponding intercepts and times, but no values given. Identifies correct latest departure time <u>or</u> earliest entry time, <i>i.e.</i> 11:44 <u>or</u> 17:53.
High partial credit: (4 marks)	_	Identifies correct latest departure time <u>and</u> earliest entry time from graph, but fails to find <u>or</u> finds incorrect time interval. Finds correct answer for time interval, but no work shown on graph. Final answer outside of tolerance, but work shown on student's graph.

7(c) (i) Find the rate at which the depth of the water in the marina is changing at 8:00 a.m., correct to two decimal places. Explain your answer in the context of the question.

(10D*)

0		Rate at which the	e depth of	f the water is changing
		h(t)	=	$1.46\sin\left(\frac{\pi}{6}t\right) + 1.56$
		h'(t)	=	$\frac{d}{dt}(1.46\sin\left(\frac{\pi}{6}t\right) + 1.56)$
			=	$(1\cdot46)(\frac{\pi}{6})\cos\left(\frac{\pi}{6}t\right)$
		@ $t = 8$		
	\Rightarrow	h'(8)	=	$(1\cdot46)(\frac{\pi}{6})\cos\frac{8\pi}{6}$
			=	$\frac{73\pi}{300}\cos\frac{4\pi}{3}$
			=	$\frac{73\pi}{300}\left(-\frac{1}{2}\right)$
			=	$-\frac{73\pi}{600}$
			=	-0.382227
			≅	-0.38 m/hr
0		Explanation		
		Answer	_	the tide is going out and the water

the tide is going out and the water level is dropping by 0.38 m per hour

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> some correct effort at differentiation.
	Mid partial credit: (6 marks)	_	Finds $h'(t) = (1.46)(\frac{\pi}{6})\cos\left(\frac{\pi}{6}t\right)$, but
			fails to evaluate <u>or</u> evaluates incorrectly.
	High partial credit: (8 marks)	_	Finds $h'(8) = -0.382227$ or -0.38 , but fails to contextualise answer properly.

Deduct 1 mark off correct answer only **①** if final answer is not rounded <u>or</u> incorrectly rounded <u>or</u> **②** for the omission of <u>or</u> incorrect use of units ('m/hr')
apply only once to each section (a), (b), (c), *etc.* of question.

*

7(c) (cont'd.)

(ii) Hence, find the other times at which the depth of the water is changing at the same rate. (5D)

		h'(t)	=	$(1.46)(\frac{\pi}{6})\cos\left(\frac{\pi}{6}t\right)$	answer from part (c)(i)
			=	$-\frac{73\pi}{600}$	
	\Rightarrow	$(1.46)(\frac{\pi}{6})\cos\left(\frac{\pi}{6}t\right)$	=	$-\frac{73\pi}{600}$	
	⇒	$\cos\left(\frac{\pi}{6}t\right)$	=	$-\frac{1}{2}$	↑ <i>y</i>
		Reference angle, α	=	$\cos^{-1}\frac{1}{2}$	sin All x
			=	$\frac{\pi}{3}$	tan cos
1	\Rightarrow	$\frac{\pi}{6}t$	=	$\pi - \frac{\pi}{3}$	2nd quadrant
			=	$\frac{2\pi}{3}$	
	\Rightarrow	t	=	4 <u>or</u> 4:00 <u>or</u> 04:00 <u>or</u> 4:0	00 am
2	\Rightarrow	$\frac{\pi}{6}t$	=	$\pi + \frac{\pi}{3}$	3rd quadrant
			=	$\frac{4\pi}{3}$	
	\Rightarrow	t	=	8 <u>or</u> 8:00 <u>or</u> 08:00 <u>or</u> 8:0	00 am
3	\Rightarrow	$\frac{\pi}{6}t$	=	$\frac{2\pi}{3} + 2\pi$	
			=	$\frac{8\pi}{3}$	
	\Rightarrow	t	=	16 <u>or</u> 16:00 <u>or</u> 4:00 pm	
4	\Rightarrow	$\frac{\pi}{6}t$	=	$\frac{4\pi}{3} + 2\pi$	
			=	$\frac{10\pi}{3}$	
	\Rightarrow	t	=	20 <u>or</u> 20:00 <u>or</u> 8:00 pm	
	\Rightarrow	Other times	=	04:00, 16:00, 20:00 (<u>or</u> eq	uivalent)
		** Accort stude	nta' ana	were for $h'(t)$ from part (a)(i)) if not oversimplified

Scale 5D (0, 2, 3, 4, 5)

* Accept students' answers for h'(t) from part (c)(i) if not oversimplified.

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down 20:00 as answer (taken from graph). Finds $(1.46)(\frac{\pi}{6})\cos(\frac{\pi}{6}t) = -\frac{73\pi}{600}$ <u>and stops or</u> fails to progress.
Mid partial credit: (3 marks)		Finds correct reference angle.
High partial credit: (4 marks)	_	Finds two correct values of <i>t</i> (excluding 08:00).

- **8(a)** A recent flood damaged a warehouse that contained 3000 computers. An insurance assessor, trying to estimate the damage, takes a random sample of 140 computers and finds that 34 of them are damaged.
 - (i) Create a 95% confidence interval for the proportion of computers that are damaged. (10D)

Confidence interval for a population proportion, p, is

 $\left[\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$ = 34 х = 140 п = p = population proportion observed 34 = 140 $\frac{17}{70}$ or 0.242857... =

At 95% confidence interval

 \Rightarrow

z-value =
$$1.96$$

 \Rightarrow 95% confidence interval for this population proportion (*p*)

$$= \left[\frac{17}{70} - 1.96\sqrt{\frac{17}{70}\left(1 - \frac{17}{70}\right)}_{140}, \frac{17}{70} + 1.96\sqrt{\frac{17}{70}\left(1 - \frac{17}{70}\right)}_{140}\right]$$
$$= \left[\frac{17}{70} - 1.96\sqrt{\frac{17}{70}\left(\frac{53}{70}\right)}_{140}, \frac{17}{70} + 1.96\sqrt{\frac{17}{70}\left(\frac{53}{70}\right)}_{140}\right]$$
$$= \left[0.2428... - 0.0710..., 0.2428... + 0.0710...\right]$$
$$= \left[0.1718..., 0.3138..\right]$$
$$\cong \left[0.1718, 0.3138\right]$$

i.e. can be 95% confident that the proportion of computers damaged lies in the range 17.18%

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for confidence interval, <i>i.e.</i> $\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \underline{\text{ or }} \hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, $\underline{\text{and stops.}}$ Finds correct value for observed population proportion (\hat{p}) and stops or fails to progress. Mention of 5% level of significance and therefore comparing to <i>z</i> -value of ±1.96.
	Mid partial credit: (6 marks)	_	Finds correct value for \hat{p} and some correct substitution into 95% confidence interval for population proportion.
	High partial credit: (8 marks)	_	Correct substitution into 95% confidence interval, but fails to finish <u>or</u> finishes incorrectly.

8(a) (cont'd.)

> Find the 95% confidence interval for the number of computers that are damaged. (ii)

> > =

=

= ĩ

95% confidence interval for this population proportion, p, is [17.18, 31.38]

(5C)

(5C)

95% confidence interval for the number of computers damaged (x) \Rightarrow

$$\left[3,000\left(\frac{17\cdot18}{100}\right), \ 3,000\left(\frac{31\cdot38}{100}\right)\right]$$
[515.4, 941.4]
[516, 942]

i.e. can be 95% confident that the number of computers damaged lies in the range 516 < x < 942

** Accept students' answers for confidence interval from part (a)(i) if not oversimplified

Scale 5C (0, 2, 4, 5)

ii not oversniipiiried.		
Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> formulates correct confidence interval with some correct substitution.
High partial credit: (4 marks)	_	Finds one endpoint of interval only [ans. 516 or 942].

(iii) The assessor wishes to halve the margin of error in part (i) above. Assuming that the proportion of computers that are damaged remains unchanged, how many computers should he include in the random sample?

= = number in old sample (140)

Margin of error in new sample

=

$$z\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$$

 \hat{p} remains unchanged

Ν

п

-

$$\Rightarrow z\sqrt{\frac{\hat{p}(1-\hat{p})}{N}} = \frac{1}{2}\left(z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$
$$\Rightarrow \frac{1}{\sqrt{N}} = \frac{1}{2}\left(\frac{1}{\sqrt{n}}\right)$$
$$\Rightarrow \frac{1}{\sqrt{N}} = \frac{1}{2}\left(\frac{1}{\sqrt{140}}\right)$$
$$\Rightarrow \frac{1}{N} = \frac{1}{4}\left(\frac{1}{140}\right)$$
$$\Rightarrow N = 4(140)$$
$$= 560$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for margin of error, <i>i.e.</i> $z\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$ or $1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$ and stops.
High partial credit: (4 marks)	_	Finds $\frac{1}{\sqrt{N}} = \frac{1}{2} \left(\frac{1}{\sqrt{n}} \right)$ with correct substitution into equation, but fails to finish <u>or</u> finishes incorrectly.

(10D)

8(b) Lactate dehydrogenase (LDH) is an enzyme found in nearly all living cells. Measuring LDH levels can be helpful in monitoring the effectiveness of certain medical treatments. For a particular group of patients in a research study, the distribution of LDH levels was normal with a mean of 210 and a standard deviation of 15.

(i)	Find the proportion of pa	atients in the study with L	DH levels of between 200 and 240.
-----	---------------------------	-----------------------------	-----------------------------------

	Z	=	$\frac{x-\mu}{\sigma}$	
	$\mu \sigma$	= =	210 15	
\Rightarrow	Z ₂₀₀	=	$\frac{200 - 210}{15}$	
		=	-0.6666666	
		≅	-0.67	
\Rightarrow	Z ₂₄₀	=	$\frac{240 - 210}{15}$	
		=	2	
\Rightarrow	$P(200 \le x \le 240)$	=	P(-0.67 < z < 2)	
		=	P(z < 2) - P(z < -0.67)	
		=	P(z < 2) - (1 - P(z < 0.67))	
		=	0.9772 - (1 - 0.7486)	from z-tables
		=	0.9772 - 0.2514	
		=	0.7258	

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct relevant formula for <i>z</i> -value with some correct substitution. Finds correct value for either z_{200} or z_{240} and stops or fails to progress.
	Mid partial credit: (6 marks)	_	Finds one <i>z</i> -value and related <i>z</i> -score, <i>i.e.</i> P(z < 2) = 0.9772 or P(z < 0.67) = 0.7486, <u>and stops or</u> fails to progress. Finds correct $P(-0.67 < z < 2)$ <u>and stops</u> <u>or</u> fails to progress (no <i>z</i> -scores found).
	High partial credit: (8 marks)	_	Finds both <i>z</i> -values and <i>z</i> -scores, but fails to manipulate $P(z < -0.67)$ correctly. Finds correct $P(z < 2) - (1 - P(z < 0.67))$, but fails to finish or finishes incorrectly, <i>e.g.</i> fails to find or finds incorrect <i>z</i> -values.

(ii) Reduced levels of LDH usually indicate that the medical treatments are working. Find the lower quartile of LDH levels for patients in this research group.

$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$P(z \le k)$	=	0·25 -0·675	from <i>z</i> -tables
	z	=	$\frac{x-\mu}{\sigma}$	
	$\mu \sigma$	= =	210 15	
\Rightarrow	-0.675	=	$\frac{x-210}{15}$	
\Rightarrow	x - 210	=	-0.675(15)	
		=	-10.125	
\Rightarrow	x	=	210 - 10.125	
		=	199.875	

2018.1 L.17/20_MS 70/80

(5C)

8(b) (ii) (cont'd.)			
	** Accept students' answers <u>or</u> -0.68 [ans. 199.8]	based or	n <i>z</i> -values of -0.67 [ans. 199.95]
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> sketches graph of normal distribution with lower quartile <u>or</u> 25% indicated. Finds $z = \frac{x - 210}{15}$ <u>and stops or</u> fails to progress (no <i>z</i> -score found).
	High partial credit: (4 marks)	_	Finds $P(z \le k) = -0.675$ (or $-0.67/-0.68$) with correct substitution into formula for z-value, <i>i.e.</i> $-0.675 = \frac{x - 210}{15}$, but fails to finish or finishes incorrectly

(iii) One month later, 100 of these patients were randomly selected and underwent further testing. It was found that their LDH levels were normally distributed with a mean of 208 and the same standard deviation. Using the sample mean, find a 95% confidence interval for the mean LDH level in this group of patients.

95% confidence interval for the mean LDH level in the group of patients retested (μ)

 $\left[\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}} \right]$

$$=$$

$$\overline{x} =$$

$$\sigma =$$

$$n =$$

=

=

=

95% confidence interval \Rightarrow

 $\left[208 - 1.96\left(\frac{15}{\sqrt{100}}\right), \ 208 + 1.96\left(\frac{15}{\sqrt{100}}\right)\right]$ [208 - 1.96(1.5), 208 + 1.96(1.5)][208 - 2.94, 208 + 2.94]= [205.06, 210.94]

i.e. 95% confidence that the mean LDH level in this group of patients lies in the range $205 \cdot 06 < \mu < 210 \cdot 94$

208 15 100

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> writes down correct formula for confidence interval, <i>i.e.</i> $\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$ or $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$, and stops. Some correct substitution $(\bar{x}, \sigma \text{ or } n)$ into 95% confidence interval (not stated) and stops or fails to progress.
High partial credit: (4 marks)	_	Correct substitution into 95% confidence interval, but fails to finish <u>or</u> finishes incorrectly.

Scale 5C (0, 2, 4, 5)

(5C)

8(b)	(cont'd.)								
	(iv)	Test the hypothesis, at the 5% level of significance, that the mean LDH level has not changed in this period of time. State clearly the null hypothesis and the alternative hypothesis. Give your conclusion in the context of the question. (50							(5C)
		0	$H_0: \mu = 210$ $H_1: \mu \neq 210$	_	mean has not changed in the last month mean has changed in the last month				
		0	95% confidence interval for the mean LDH level in the group of patients rete = $[205.06, 210.94]$ answer from part						s retested (μ) part (b)(iii)
		€	Conclusionas 210 is inside the interval for the mean LDH level for the population group withinthe research study, $205 \cdot 06 < \mu < 210 \cdot 94$, we fail to reject the null hypothesis (H_0), <i>i.e.</i> conclude that the mean LDH level has not changed in that time period** Accept students' answers for confidence interval from part (b)(iii)if not oversimplified.						
	Scale 5C (0, 2, 4, 5)		Low partial credit: (2 mar		rks)	 Any relevant first step, <i>e.g.</i> write correct null hypothesis <u>and/or</u> a hypothesis only. 		rites down alternative	
			High partial cred	it: (4 ma	rks)	_	States both l compares pe confidence i - fails to a - fails to co	hypotheses correc opulation mean (μ interval from part (ccept <u>or</u> reject hyp ontextualise answe	tly and ι) to the (iii) but: pothesis, er properly.
(5D)

8(b) (cont'd.)

Find the *p*-value of the test you performed in **part** (iv) above and explain what this value (v) represents in the context of the question.

0	<u><i>p</i>-value</u>			
	Ζ	=	$\frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	
\Rightarrow	\overline{x} μ σ n z		208 210 15 100 $208 - 210\frac{15}{\sqrt{100}}\frac{-2}{1 \cdot 5}-1 \cdot 3333333$	
\Rightarrow	P(z < -1.33)	= = =	-1.53 1 - P(z < 1.33) 1 - 0.9082 0.0918	3) from <i>z</i> -tables
\Rightarrow	<i>p</i> -value	= = >	2×0.0918 0.1836 0.05	
0	<u>Explanation</u>	_	Any 1: the <i>p</i> -value is a more extrem is true // if the mean L then the proba sample retesto - it is because we do not reje	the probability that the test statistic or ne value could occur if the null hypothesis DH level of the population group is 210, ability that the mean LDH level of the ed would be 208 by chance is 18.36% this has more than a 5% chance that ect the null hypothesis
Scale 5D (0, 2, 3, 4, 5)	Low partial credit:	(2 marl	ks) – –	Any relevant first step, <i>e.g.</i> writes down correct relevant formula for <i>z</i> -value and stops. Some correct substitution $(\bar{x}, \mu, \sigma \text{ or } n)$ into formula for <i>z</i> -value (not stated) and stops or fails to progress.
	Mid partial credit:	(3 mark	cs) – –	Finds $P(z < 1.33) = 0.9082$, but fails to manipulate $P(z < -1.33)$ correctly. Finds $P(z < -1.33) = 1 - P(z < 1.33)$, but fails to find <u>or</u> finds incorrect <i>z</i> -value.
	High partial credit:	: (4 mar	ks) –	Finds correct <i>p</i> -value, but fails to contextualise answer properly.

С

Т

Three points, A, B and C, are on a horizontal roadway such that |AB| = 35 m and |BC| = 70 m. A vertical mobile phone mast [DT] has its base, D, at the same level as the roadway. The angles of elevation from A, B and C to the top of the tower, T, are such that $\tan |\angle TAD| = \frac{3}{20}$, $\tan |\angle TBD| = \frac{1}{5}$ and $\tan |\angle TCD| = \frac{3}{13}$.

A

В

(10D)

(50 marks)

_

Mid partial credit: (6 marks)

High partial credit: (8 marks)

h

|DA|

and stops or fails to progress.

Finds one distance correct in terms of h.

Finds two distances correct in terms of h.

9(a) (cont'd.)

(ii)	Use the cosine rule to find $\cos \angle ABD $ in the form $\frac{a - h^2}{bh}$, where $a, b \in \mathbb{N}$.	(10D)
---------------	--	-------

	Using cosine rule			
	Consider $\triangle ABD$			
	a^2	=	$b^2 + c^2 - 2bc\cos A$	
\Rightarrow	$ DA ^2$	=	$ AB ^{2} + DB ^{2} - 2 AB . DB ^{2}$	$ \cos \angle ABD $
	DA	=	$\frac{20h}{3}$	answer from part (a)(i)
	AB	=	35 (given)	
	DB	=	5h	answer from part (a)(i)
\Rightarrow	$(\frac{20h}{3})^2$	=	$(35)^2 + (5h)^2 - 2(35)(5h)\cos^2\theta$	$ \angle ABD $
\Rightarrow	$\frac{400h^2}{9}$	=	$1,225 + 25h^2 - 350h\cos \angle d$	ABD
\Rightarrow	$350h\cos \angle ABD $	=	$1,225 + 25h^2 - \frac{400h^2}{9}$	
		=	$1,225 - \frac{175h^2}{9}$	
\Rightarrow	$3,150h\cos \angle ABD $	=	$11,025 - 175h^2$	
\Rightarrow	$\cos \angle ABD $	=	$\frac{11,025 - 175h^2}{3,150h}$	
		=	$\frac{63-h^2}{18h}$	

** Accept students' answers for |DA| and |DB| from part (a)(i) if not oversimplified.

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> draws <u>or</u> indicates on diagram $\triangle ABD$ with correct lengths of sides shown [<i>i.e.</i> sides <i>a</i> , <i>b</i> , <i>c</i> and relevant angle]. Some correct substitution into cosine rule <u>and stops or</u> fails to progress.
	Mid partial credit: (6 marks)	_	Fully correct substitution into cosine rule and stops or fails to progress.
	High partial credit: (8 marks)	-	Fully correct substitution into cosine rule with substantive work towards isolating $\cos \angle ABD $, but fails to finish <u>or</u> finishes incorrectly. Isolates $\cos \angle ABD $ correctly, but fails to give final answer in required form.

Question 9 (cont'd.)

9(a) (cont'd.)

(iii) Similarly, show that
$$\cos |\angle DBC| = \frac{1.575 + 2h^2}{225h}$$
. (5D)

$$\frac{Using cosine rule}{Consider \Delta DBC}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Rightarrow |DC|^2 = |BC|^2 + |DB|^2 - 2|BC| |DB| \cos |\angle DBC|$$

$$|DC| = \frac{13h}{3} \qquad \dots \text{ answer from part (a)(i)}$$

$$|BC| = 70 \text{ (given)}$$

$$|DB| = 5h \qquad \dots \text{ answer from part (a)(i)}$$

$$\Rightarrow (\frac{13h}{3})^2 = (70)^2 + (5h)^2 - 2(70)(5h) \cos |\angle DBC|$$

$$\Rightarrow \frac{169h^2}{9} = 4,900 + 25h^2 - 700h \cos |\angle DBC|$$

$$\Rightarrow 700h \cos |\angle DBC| = 4,900 + 25h^2 - \frac{169h^2}{9}$$

$$= 4,900 + \frac{56h^2}{9}$$

$$\Rightarrow 6,300h \cos |\angle DBC| = 44,100 + 56h^2$$

$$\Rightarrow \cos |\angle DBC| = \frac{44,100 + 56h^2}{6,300h}$$

$$= \frac{1,575 + 2h^2}{225h}$$

** Accept students' answers for |DC| and |DB| from part (a)(i) if not oversimplified.

=

Low partial credit: (2 marks)	_	Any relevant first step, <i>e.g.</i> draws <u>or</u> indicates on diagram ΔDBC with correct lengths of sides shown [<i>i.e.</i> sides <i>a</i> , <i>b</i> , <i>c</i> and relevant angle]. Some correct substitution into cosine rule <u>and stops or</u> fails to progress.
Mid partial credit: (3 marks)	-	Fully correct substitution into cosine rule and stops or fails to progress.
High partial credit: (4 marks)	_	Fully correct substitution into cosine rule with substantive work towards isolating $\cos \angle DBC $, but fails to finish <u>or</u> finishes incorrectly. Isolates $\cos \angle DBC $ correctly, but fails to give final answer in required form.

Scale 5D (0, 2, 3, 4, 5)

9(a)

(cont'd.)					
(iv) Show that $\cos(180^\circ - \theta) = -\cos\theta$. (5C)					
⇒	cos (A - B) cos (180° - θ)	= =	$\cos A \cos B + \sin A \sin B$ $\cos 180^{\circ} \cos \theta + \sin 180^{\circ} \sin \theta$		
	cos 180° sin 180°	=	$^{-1}_{0}$		
\Rightarrow	$\cos(180^\circ - \theta)$	= =	$(-1)\cos\theta + (0)\sin\theta -\cos\theta$		
Scale 5C (0, 2, 4, 5)	Low partial credit	:: (2 ma	rks) – Any relevant first step, <i>e.g.</i> writes down correct expansion of $\cos (A - B)$ with some correct substitution $(A \text{ or } B)$.		
	High partial credi	t: (4 ma	rks) – Expands $\cos(180^\circ - \theta)$ correctly and identifies $\cos 180^\circ = -1$ and $\sin 180^\circ = 0$, but fails to finish <u>or</u> finishes incorrectly.		

(v) Hence, or otherwise, find the value of *h*.

$\stackrel{\Rightarrow}{\Rightarrow}$	$ \angle ABD + \angle DBC$ $ \angle ABD $ $\cos \angle ABD $	= = =	180° $180^{\circ} - \angle DBC $ $\cos (180^{\circ} - \angle DBC)$	as <i>ABC</i> is a straight line
	$\cos(180^\circ - \theta)$	=	$-\cos \theta$	from part (a)(iv)
\Rightarrow	$\cos \angle ABD $	=	$-\cos \angle DBC $	
\Rightarrow	$\frac{63-h^2}{18h}$	=	$-\frac{1,575+2h^2}{225h}$	from parts (a)(ii) and (a)(iii)
\Rightarrow	$225(63 - h^2)$	=	$-18(1,575+2h^2)$	
\Rightarrow	$14,175 - 225h^2$	=	$-28,350 - 36h^2$	
\Rightarrow	$225h^2 - 36h^2$	=	14,175 + 28,350	
\Rightarrow	$189h^2$	=	42,525	
\Rightarrow	h^2	=	$\frac{42,525}{189}$	
		=	225	
\Rightarrow	h	=	$\sqrt{225}$	
		=	15 m	

** Accept students' answers for $\cos | \angle ABD |$ from part (a)(ii) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down $ \angle ABD + \angle DBC = 180^{\circ} \text{ or similar.}$ Finds $\frac{63 - h^2}{18h} = \frac{1,575 + 2h^2}{225h}$ (incorrect sign) and stops or fails to progress.
	Mid partial credit: (6 marks)	_	Equates $\frac{63 - h^2}{18h} = -\frac{1,575 + 2h^2}{225h}$ (correct sign) <u>and stops or</u> fails to progress.
	High partial credit: (8 marks)	-	Equates $\frac{63 - h^2}{18h} = -\frac{1,575 + 2h^2}{225h}$ with substantive work towards isolating <i>h</i> , but fails to finish <u>or</u> finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m') - apply only once in each section (a), (b), (c), *etc.* of question.

(10D*)

9(b)	Using your answer to part (of the tower, <i>D</i> , to the road	a)(v), or otherwise, fin way <i>ABC</i> .	nd the s	hortest distance from the foo	ot (10D*)
	⇒	$ DB \\ h \\ DB $	= = =	5h 15 5(15) 75 m	answer from part (a)(i) answer from part (a)(v)
		Let $ DE $ = shortest	distanc	e (\perp distance) from <i>D</i> to <i>AC</i>	
		$\cos \angle DBE $	=	$\frac{\cos \angle DBC }{\frac{1,575+2h^2}{225h}}$	D
				given in part (a)(iii) $1.575 + 2(15)^2$	E C
	\Rightarrow	$\cos \angle DBE $	=	225(15)	
			=	$\frac{1,575+450}{3,375}$	
			=	$\frac{2,025}{3,375}$	
			=	$\frac{3}{5}$	
	\Rightarrow	$\sin \angle DBE $	=	$\frac{4}{5}$	5 4
		$\sin \angle DBE $	=	$\frac{ DE }{ DB }$	$B \overline{3} E$
			=	<u> DE </u> 75	
	\Rightarrow	$\frac{ DE }{75}$	=	$\frac{4}{5}$	
	\Rightarrow	DE	=	$\frac{4(75)}{5}$	
			=	$\frac{300}{5}$	
		.	=	60 m	

** Accept students' answers for |DB| and h from parts (a)(i) and (a)(v) if not oversimplified.

Scale 10D* (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	_	Any relevant first step, <i>e.g.</i> writes down shortest distance = \perp distance from <i>D</i> to <i>ABC</i> <u>or similar</u> . Finds correct value of <i>DB</i> [ans. 75]. Some correct substitution of <i>h</i> value into $\cos \angle DBE = \frac{1,575 + 2h^2}{225h}$ and stops <u>or</u> fails to progress.
	Mid partial credit: (6 marks)	_	Substitutes correctly into $\cos \angle DBE $ = $\frac{1,575 + 2h^2}{225h}$ and finds $\cos \angle DBE = \frac{3}{5}$ and stops or fails to progress.
	High partial credit: (8 marks)	_	Finds $\sin \angle DBE = \frac{4}{5} \text{ or } \frac{ DE }{75}$, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('m') - apply only once in each section (a), (b), (c), *etc*. of question.

Notes:

