Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level

Marking Scheme

Paper 1 Pg. 2
Paper 2 Pg. 42

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level - Paper 1
 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect).
Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.
These scales and the marks that they generate are summarised in the following table:

Scale label	A	\mathbf{B}	\mathbf{C}	\mathbf{D}
No. of categories	2	3	4	5
5 mark scale		$\mathbf{0 , 2 , 5}$	$\mathbf{0 , 2 , 4 , 5}$	$\mathbf{0 , 2 , 3 , 4 , 5}$
10 mark scale			$\mathbf{0 , 4 , 7 , 1 0}$	$\mathbf{0 , 4 , 6 , 8 , 1 0}$
15 mark scale				$\mathbf{0 , 5 , 9 , 1 2 , 1 5}$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving (1) incorrect rounding, © omission of units, $\mathbf{3}$ a misreading that does not oversimplify the work or $\mathbf{4}$ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk.
Thus, for example, scale 10C* indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- \quad The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- The * penalty is not applied for the omission of units in currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.
Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Section A

Q. 1	(a) (b)	$15 \mathrm{D}(0,5,9,12,15)$ 	

Q. 2	(a)	(i)	$10 \mathrm{C}(0,4,7,10)$
		(ii)	$10 \mathrm{D}(0,4,6,8,10)$
	(b)		$5 \mathrm{C}(0,2,4,5)$

(b) $\quad 25$

Q. 3	(a) (b)	(i) (ii)	$10 \mathrm{D}(0,4,6,8,10)$

25

Q.4	(a)	(i)	$5 \mathrm{C}(0,2,4,5)$	
		(ii)	$10 \mathrm{D}^{*}(0,4,6,8,10)$	
	(b)		$10 \mathrm{D}^{*}(0,4,6,8,10)$	
				$\mathbf{2 5}$

Q. 5	(a)	$10 \mathrm{D}(0,4,6,8,10)$
	(b)	$5 \mathrm{C}(0,2,4,5)$
	(c)	$10 \mathrm{D}(0,4,6,8,10)$

25

Section B

Q. 7	(a)	(i) $5 C(0,2,4,5)$ (ii)	$5 C^{*}(0,2,4,5)$	
		(iii)	$10 D^{*}(0,4,6,8,10)$	
	(iv)	5C $(0,2,4,5)$		
	(b)	(i)	5B $(0,2,5)$	
		(ii)	5B $(0,2,5)$	
		(iii)	$10 D^{*}(0,4,6,8,10)$	
				$\mathbf{4 5}$

45
Q. $8 \quad$ (a) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(iii) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(iv) $5 C^{*}(0,2,4,5)$
(b) (i) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(ii) $\quad 10 \mathrm{C}(0,4,7,10)$
(iii) $5 \mathrm{D}(0,2,3,4,5)$
Q. $9 \quad$ (a) (i) $\quad 5 \mathrm{~B}(0,2,5)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(iii) $5 \mathrm{C}(0,2,4,5)$
(iv) $5 \mathrm{C}(0,2,4,5)$
(b) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(iii) $10 \mathrm{D}(0,4,6,8,10)$
(iv) $5 \mathrm{C}(0,2,4,5)$
(v) $5 \mathrm{C}(0,2,4,5)$
Q. $6 \quad$ (a) (i) $\quad 10 \mathrm{C}(0,4,7,10)$
$\begin{array}{ll} & \text { (ii) } \quad 5 \mathrm{C}(0,2,4,5) \\ \text { (b) } \quad & 10 \mathrm{D}(0,4,6,8,10)\end{array}$ 25

Current Marking Scheme

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students’ work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

Copyright

All rights reserved. This marking scheme and corresponding papers(s) are protected by Irish (EU) copyright law. Reproduction and distribution of these materials or any portion thereof without the written permission of the publisher is prohibited except for the immediate use within a classroom.

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level - Paper 1
Marking Scheme (300 marks)

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all nine questions.
Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.
Answers should be given in simplest form, where relevant.

Answer all six questions from this section.

1(a) Solve the simultaneous equations:

1(a) (cont'd.)
Equating (4) and (5):
(4) $\quad 13 x+12 z=21(\times 11)$
(5) $\quad 28 x-22 z=117(\times 6)$
$\Rightarrow \quad 143 x+132 z \quad=\quad 231$
$\frac{168 x-132 z=702}{311 x}$
$\Rightarrow \quad x \quad=\quad 3$
Substituting into (4):
(4) $\quad 13 x+12 z \quad=\quad 21$
$\Rightarrow \quad 13(3)+12 z \quad=\quad 21$
$\Rightarrow \quad 12 z \quad=\quad 21-39$
$\begin{array}{rlrr} & = & -18 \\ z & = & -\frac{3}{2}\end{array}$
Substituting into (1):
(1)
$4 x+y-4 z=16$
$\Rightarrow 4(3)+y-4\left(-\frac{3}{2}\right) \quad=\quad 16$
$\Rightarrow \quad y \quad=\quad 16-12-6$

Scale 15D (0, 5, 9, 12, 15)	Low partial credit: (5 marks)	-	Any relevant first step, e.g. eliminates fractions in at least one equation.
	Mid partial credit: (9 marks)	-	Finds correctly one equation with two variables, e.g. $13 x+12 z=21$.
	High partial credit: (12 marks)	-	Finds correctly two equations with the same two variables, e.g. $13 x+12 z=21$ and $28 x-22 z=117$, but fails to finish or finishes incorrectly. Finds one variable (x, y or z) only.

(b) If $(x+a)^{2}$ is a factor of $10 x^{3}+21 a x^{2}+20 a b x+25 a$, where a and b are non-zero constants, find the possible values of a and b.

$$
\begin{aligned}
& \text { (1) }(x+a)^{2} \\
& =\quad x^{2}+2 a x+a^{2} \\
& \left.x^{2}+2 a x+a^{2}\right) \frac{10 x+a}{10 x^{3}+21 a x^{2}+20 a b x}+25 a \\
& -10 x^{3}-20 a x^{2}-10 a^{2} x \\
& a x^{2}+x\left(20 a b-10 a^{2}\right)+25 a \\
& \frac{-a x^{2}-2 a^{2} x-}{}
\end{aligned}
$$

$$
\begin{aligned}
& b \quad=\quad \frac{3}{5}(-5) \\
& \text { or } \\
& \text { 2) }(x+a)^{2}=x^{2}+2 a x+a^{2} \\
& \Rightarrow \quad\left(x^{2}+2 a x+a^{2}\right)(10 x+c) \quad=10 x^{3}+21 a x^{2}+20 a b x+25 a \\
& \Rightarrow \quad 10 x^{3}+20 a x^{2}+10 a^{2} x+c x^{2}+2 a c x+a^{2} c=10 x^{3}+21 a x^{2}+20 a b x+25 a \\
& x^{2} \text {. Comparing terms: } \\
& x^{2}: 20 a+c \quad=21 a \\
& \Rightarrow 21 a-20 a \quad=\quad c \\
& x: 10 a^{2}+2 a c \quad=\quad 20 a b \\
& \Rightarrow 10 a^{2}+2 a(a) \quad=\quad 20 a b \\
& \Rightarrow 10 a+2 a \quad=\quad 20 b \\
& \Rightarrow 20 b=12 a \\
& \Rightarrow \quad b \quad=\frac{3}{5} a \\
& \text { constants: } a^{2} c \quad=25 a \\
& \Rightarrow \quad a^{2}(a) \quad=\quad 25 a \\
& \Rightarrow a^{2}=25 \\
& \Rightarrow a=5 \text { or }-5 \\
& \Rightarrow \quad b \quad b \quad \frac{3}{5}(5) \quad=\frac{3}{5}(-5)
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant correct step, e.g. some correct division in dividing $x^{2}+2 a x+a^{2}$ into equation or some correct multiplication of $\left(x^{2}+2 a x+a^{2}\right)(10 x+c)$.
	-	Writes down $2 x-1$ is a factor of equation and attempts to divide.
Mid partial credit: (6 marks)	-	Fully correct division or multiplication, but fails to progress.
High partial credit: (8 marks)	-	Finds $a= \pm 5$ or $b=\frac{3}{5} a$, but fails to find
		a and b (both values) [Method $\mathbf{0}]$. Finds $a=c$ and $b=\frac{3}{5} a$, but fails to find
	a and b (both values) [Method © $].$	

2(a) $z=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$ is a complex number, where $i^{2}=-1$.
(i) Write z in polar form.

$$
-\frac{1}{2}-\frac{\sqrt{3}}{2} i=r(\cos \theta+i \sin \theta)
$$

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
r & =|z| \\
& =\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(-\frac{\sqrt{3}}{2}\right)^{2}}
\end{aligned} \\
& =\sqrt{\frac{1}{4}+\frac{3}{4}} \\
& =\sqrt{1} \\
& =1 \\
& \text { (2) } \begin{aligned}
\tan \alpha & =\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} \\
& =\sqrt{3}
\end{aligned} \\
& \Rightarrow \quad \alpha \quad=\quad \tan ^{-1} \sqrt{3} \\
& =\frac{\pi}{3} \text { or } 60^{\circ} \\
& \Rightarrow \quad=\quad \pi+\frac{\pi}{3} \quad \text { or } \theta \quad=180^{\circ}+60^{\circ} \\
& =\frac{4 \pi}{3} \\
& -\frac{1}{2}-\frac{\sqrt{3}}{2} i=r(\cos \theta+i \sin \theta) \\
& =1\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right) \\
& =\quad \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} \text { or } \cos 240^{\circ}+i \sin 240^{\circ} \\
& \text { or } \cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right) \\
& \text { or } \cos \left(-120^{\circ}\right)+i \sin \left(-120^{\circ}\right)
\end{aligned}
$$

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down relevant formula to express a complex		
	-	number in polar form. Finds correct r or α (reference angle).		
	-	Plots z correctly on an Argand diagram.	,	Finds correct values for both r and θ,
:---				
but fails to finish or finishes incorrectly.	,	Finds correct values for both r and α		
:---				
(reference angle), but complex number				
in wrong quadrant and finishes correctly.				

2(a) (cont'd.)
(ii) Hence, find the four complex numbers w such that $w^{4}=z$.

Give your answers in rectangular form.

$$
\begin{aligned}
& w^{4}=z \\
&=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} \\
&=\cos \left(\frac{4 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{4 \pi}{3}+2 n \pi\right) \\
& \Rightarrow \quad w \quad\left[\cos \left(\frac{4 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{4 \pi}{3}+2 n \pi\right)\right]^{\frac{1}{4}} \\
&=\cos \left(\frac{4 \pi}{12}+\frac{2 n \pi}{4}\right)+i \sin \left(\frac{4 \pi}{12}+\frac{2 n \pi}{4}\right) \\
&=\cos \left(\frac{\pi}{3}+\frac{n \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{n \pi}{2}\right)
\end{aligned}
$$

For $n=0$

$$
\begin{aligned}
w_{1} & =\cos \left(\frac{\pi}{3}+\frac{(0) \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{(0) \pi}{2}\right) \\
& =\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{aligned}
$$

For $n=1$

$$
\begin{aligned}
w_{2} & =\cos \left(\frac{\pi}{3}+\frac{(1) \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{(1) \pi}{2}\right) \\
& =\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6} \\
& =-\frac{\sqrt{3}}{2}+\frac{1}{2} i
\end{aligned}
$$

For $n=2$

$$
\begin{aligned}
w_{3} & =\cos \left(\frac{\pi}{3}+\frac{(2) \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{(2) \pi}{2}\right) \\
& =\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} \\
& =-\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{aligned}
$$

For $n=3$

$$
\begin{aligned}
w_{4} & =\cos \left(\frac{\pi}{3}+\frac{(3) \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{(3) \pi}{2}\right) \\
& =\cos \frac{11 \pi}{6}+i \sin \frac{11 \pi}{6} \\
& =\frac{\sqrt{3}}{2}-\frac{1}{2} i
\end{aligned}
$$

Any relevant first step, e.g. writes down $w=\sqrt[4]{z}$ or $z^{\frac{1}{4}}$ or $w^{4}=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$ or similar.

- Writes down z in general polar form,

$$
\text { i.e. } z=\cos \left(\frac{4 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{4 \pi}{3}+2 n \pi\right) .
$$

Question 2 (cont'd.)

2(a) (ii) (cont'd.)

Mid partial credit: (6 marks)		De Moivre's Theorem applied correctly with $n=\frac{1}{4}$, but fails to progress, e.g. $w=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ and stops. Finds correct general term for w, but fails to substitute $n=0,1,2,3$ into expression, i.e. $w=\cos \left(\frac{\pi}{3}+\frac{n \pi}{2}\right)+i \sin \left(\frac{\pi}{3}+\frac{n \pi}{2}\right)$ and stops or continues incorrectly.
High partial credit: (8 marks)	-	Finds first root, $w_{1}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$ or $\frac{1}{2}+\frac{\sqrt{3}}{2} i$ correctly from general polar form, but fails to find or finds incorrect other roots. Finds all roots in polar form, but fails to convert or converts incorrectly to rectangular form. Substantive work towards finding all four roots with one error/omission.

2(b) Use De Moivre's Theorem to prove that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.

Equating the imaginary parts
$\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta$

$$
=\quad 3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta
$$

$$
=\quad 3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta
$$

$$
=\quad 3 \sin \theta-4 \sin ^{3} \theta
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down $(\cos \theta+i \sin \theta)^{3}=\cos 3 \theta+i \sin 3 \theta$
	-	and stops. Expands $(\cos \theta+i \sin \theta)^{3}$ correctly and stops.
High partial credit: (4 marks)	-	Finds both expansions for $(\cos \theta+i \sin \theta)^{3}$ correctly and equates imaginary parts,
	$-\quad$but fails to finish or finishes incorrectly. Substantive work towards finding $\sin 3 \theta$, but with one error/omission.	

$$
\begin{aligned}
& \text { Consider }(\cos \theta+i \sin \theta)^{3} \\
& (\cos \theta+i \sin \theta)^{3} \quad=\quad \cos 3 \theta+i \sin 3 \theta \quad \text {... De Moivre's Theorem } \\
& \text { Expanding }(\cos \theta+i \sin \theta)^{3} \\
& (\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3\left(\cos ^{2} \theta\right)(i \sin \theta)+3(\cos \theta)(i \sin \theta)^{2}+(i \sin \theta)^{3} \\
& =\quad\left[\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right]+i\left[3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right]
\end{aligned}
$$

3(a) Solve the equation $3^{2 x+2}-28\left(3^{x}\right)+3=0$. [Hint: Let $y=3^{x}$.]

$$
\left.\begin{array}{lllll}
& \begin{array}{ll}
\text { Let } y=3^{x} & \\
3^{2 x+2}
\end{array} & =3^{x+x+2} \\
& = & \left(3^{x}\right)\left(3^{x}\right)\left(3^{2}\right)
\end{array}\right)
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down $3^{2 x+2}=\left(3^{2 x}\right)\left(3^{2}\right),\left(3^{x}\right)\left(3^{x}\right)\left(3^{2}\right)$ or similar.
	-	Finds $3^{2 x+2}=9 y^{2}$ correctly and stops or continues incorrectly.
Mid partial credit: $(6$ marks)	-	Substitutes y correctly into quadratic eqn. and finds correct factors of equation [ans. $(9 y-1)(y-3)=0]$.
High partial credit: (8 marks)	-	Finds two correct values for y, but fails to find both corresponding values for x or finds incorrect values for x.
	-	Finds one correct value for y and finds correct corresponding value for x.

3(b) (i) Prove by induction that the sum of the squares of the first n natural numbers,

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\ldots+n^{2}, \text { is } \frac{n(n+1)(2 n+1)}{6} \tag{10D}
\end{equation*}
$$

(1) $\quad \mathrm{P}(n)$:
$1^{2}+2^{2}+3^{2}+\ldots+n^{2} \quad=\quad \frac{n(n+1)(2 n+1)}{6}$
(2) $\mathrm{P}(1)$:

Test hypothesis for $n=1$
1^{2}

$$
=\frac{1(1+1)(2(1)+1)}{6}
$$

$$
=\frac{1(2)(3)}{6}
$$

$$
=\quad \frac{6}{6}
$$

$$
=\quad 1
$$

$\Rightarrow \quad$ True for $n=1$
$3 \quad \mathrm{P}(k)$:
Assume hypothesis for $n=k$ is true

$$
\Rightarrow \quad 1^{2}+2^{2}+3^{2}+\ldots+k^{2} \quad=\quad \frac{k(k+1)(2 k+1)}{6}
$$

(4) $\mathrm{P}(k+1)$:

Test hypothesis for $n=k+1$
To Prove:
$1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}$
Proof:
Consider LHS:

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} \\
& =\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\text { RHS }
\end{aligned}
$$

$\Rightarrow \quad$ True for $n=k+1$
So, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Since $P(1)$ is true, then by induction $P(n)$ is true for any positive integer $n /$ all $n \in \mathbb{N}$.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correctly $\mathrm{P}(1)$ step and stops.
Mid partial credit: (6 marks)	-	Writes down correctly $\mathrm{P}(1)$ and $\mathrm{P}(k)$ or $\mathrm{P}(k+1)$ steps.
High partial credit: (8 marks)	-	Writes down correctly $\mathrm{P}(1)$ step and $\mathrm{P}(k)$ and uses $\mathrm{P}(k)$ to prove $\mathrm{P}(k+1)$ step, but fails to finish or finishes incorrectly.
	$-\quad$Writes down all steps correctly, but no conclusion or incorrect conclusion given.	

3(b) (cont'd.)
(ii) Hence, or otherwise, evaluate the sum of the squares of all the natural numbers from 30 to 60, inclusive.

$$
\begin{align*}
1^{2}+2^{2}+3^{2}+\ldots+n^{2} & =\frac{n(n+1)(2 n+1)}{6} \\
\Rightarrow \quad 30^{2}+31^{2}+33^{2}+\ldots+60^{2} & =\frac{S_{60}-S_{29}}{} \tag{5C}\\
& =\frac{60(60+1)(120+1)}{6}-\frac{29(29+1)(58+1)}{6} \\
& =\frac{60(61)(121)}{6}-\frac{29(30)(59)}{6} \\
& =\frac{442,860}{6}-\frac{51,330}{6} \\
& =73,810-8,555 \\
& =65,255
\end{align*}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	$-\quad$Any relevant first step, e.g. writes down 'sum $=S_{60}-S_{29}$ or similar.	
		[Do not accept 'sum $=S_{60}-S_{30}$ '.] Correct substitution into formula from part (b)(i) using $n=29,30$ or 60.
High partial credit: (4 marks)	$-\quad$Correct substitution into formula using $n=29$ and 60, but fails to evaluate or	
		$n=$evaluates incorrectly. Incorrect substitution into formula using $n=30$, but otherwise finishes correctly [ans. 73,810 $-9,455=64,355]$.

Dan and Kate plan to buy a house which costs $€ 250,000$. In order to get a mortgage on the property, the couple need to save a deposit of 10% of the purchase price. They open a savings account in their local Credit Union which offers an annual equivalent rate (AER) of $3 \cdot 5 \%$.

4(a) (i) Show that the rate of interest, compounded monthly, which is equivalent to an AER of $3 \cdot 5 \%$ is $0 \cdot 287 \%$, correct to three decimal places.

	r	$=$	annual equivalent rate (AER)
	i	$=$	monthly percentage rate
	F	=	$P(1+r)$
		$=$	$P(1+i)^{t}$
\Rightarrow	$1(1+r)$	=	$1(1+i)^{t}$
\Rightarrow	$1(1+0 \cdot 035)$	=	$1(1+i)^{12}$
\Rightarrow	1.035	=	$(1+i)^{12}$
			(1-035) ${ }^{\frac{1}{12}}$
\Rightarrow	$1+i$	$=$	$(1 \cdot 035)^{\frac{1}{12}}$
\Rightarrow	i	$=$	1.002870898... - 1
		=	0.002870898...
\Rightarrow	r	$=$	0.2870898...\%
		\cong	0.287\%

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula $F=P(1+i)^{t}$ and stops.
	-	Some correct substitution into correct formula (not stated) and stops or continues.
	-	Correct substitution into incorrect formula and stops or continues.
High partial credit: (4 marks)	-	Fully correct substitution into formula, i.e. $1(1+0 \cdot 035)=1(1+i)^{12}$ or equivalent,
		but fails to find or finds incorrect rate. Final answer not given as a percentage,, i.e. $r=0 \cdot 002870898 . .$.

Question 4 (cont'd.)

4(a) (cont'd.)
(ii) Dan and Kate decide to put $€ 500$ in the savings account at the beginning of each month. How long will it take them to save up the deposit for the house? Give your answer in months, correct to the nearest month.
(10D*)

$$
\begin{aligned}
\text { Deposit required } & =10 \% \text { of } 250,000 \\
& =250,000 \times \frac{10}{100} \\
& =€ 25,000
\end{aligned}
$$

Value of savings instalments after n months

$$
\begin{aligned}
F & = \\
& =P(1+i)^{t} \\
& =500(1+0 \cdot 00287)^{n} \\
& =500(1 \cdot 00287)^{n}
\end{aligned}
$$

Month	Instalment (€)	Value of instalment after n months
1	500	$500(1 \cdot 00287)^{n}$
2	500	$500(1 \cdot 00287)^{n-1}$
3	500	$500(1 \cdot 00287)^{n-2}$
\ldots	\ldots	\ldots
t	500	$500(1 \cdot 00287)^{1}$

$\Rightarrow \quad$ Geometric series with $a=500(1 \cdot 00287)$ and $r=1.00287$

$$
\begin{aligned}
& S_{n} \\
& =\frac{a\left(1-r^{n}\right)}{1-r} \\
& \Rightarrow \quad 25,000 \\
& =\frac{500(1.00287)\left(1-1.00287^{n}\right)}{1-1.00287} \\
& =\quad-174,716 \cdot 027874 \ldots\left(1-1 \cdot 00287^{n}\right) \\
& =174,716 \cdot 027874 \ldots\left(1 \cdot 00287^{n}-1\right) \\
& \Rightarrow \quad 1 \cdot 00287^{n}-1 \quad=\quad \frac{25,000}{174,716 \cdot 027874 \ldots} \\
& \begin{array}{lll}
& = & 0 \cdot 143089333 \ldots \\
& 1 \cdot 00287^{n} & = \\
& 0 \cdot 143089333 \ldots+1
\end{array} \\
& \Rightarrow \quad n \quad=\quad \log _{1 \cdot 00287}(1 \cdot 143089333 \ldots) \\
& =\quad 1 \cdot 143089333 \ldots \\
& =46 \cdot 664235 \ldots \\
& \cong \quad 47 \text { months } \\
& \Rightarrow \quad \text { it will take Dan and Kate } 47 \text { months to save up the deposit }
\end{aligned}
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. reference to value of first instalment or subsequent instalments after n months
		$=500(1 \cdot 00287)^{n}$, where $1<n \leq 60$.
	-	Finds deposit required [ans. 25,000]. Recognises value of savings instalments after n months as a sum of a GP with some correct substitution into S_{n} formula.
	$-\quad$Fully correct substitution into S_{n} formula, but fails to progress.	
Mid partial credit: (6 marks)	Substantive work towards finding value of n with one error /omission or equation in $n(n$ no longer an index).	
High partial credit: (8 marks)		

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.
* No deduction applied for the omission of or incorrect use of units ('months').

Question 4 (cont'd.)

4(b) After saving for three years, Dan and Kate find the perfect house. They decide to borrow the remainder of the deposit at a monthly interest rate of 0.425%, fixed for the term of the loan. The loan is to be repaid in equal monthly repayments over five years and the first repayment is due one month after the loan is issued. Calculate the amount of each monthly repayment, correct to the nearest cent.

(1)	Value of savings instalments after 36 months		
	\# instalments =		$\begin{aligned} & 3 \times 12 \\ & 36 \end{aligned}$
	F	$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	$\begin{aligned} & P(1+i)^{t} \\ & 500(1+0 \cdot 00287)^{n} \\ & 500(1 \cdot 00287)^{n} \end{aligned}$
	Month	Instalment (€)	Value of instalment after 36 months
	1	500	500(1.00287) ${ }^{36}$
	2	500	$500(1 \cdot 00287)^{35}$
	3	500	500(1.00287) ${ }^{34}$

	36	500	500(1.00287) ${ }^{1}$

$\Rightarrow \quad$ Geometric series with $n=36, a=500(1 \cdot 00287)$ and $r=1 \cdot 00287$

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
\Rightarrow \quad S_{36} & =\frac{500(1 \cdot 00287)\left(1-1 \cdot 00287^{36}\right)}{1-1 \cdot 00287} \\
& =18,988 \cdot 506021 \ldots \\
& \cong € 18,988.51
\end{aligned}
$$

(2) Remainder of deposit:

$$
\begin{aligned}
\text { Remainder } & =25,000-18,988 \cdot 51 \\
& =€ 6,011 \cdot 49
\end{aligned}
$$

3 Monthly repayments:
(1) Sum of geometric series:

\# repayments	$=12 \times 5$
	$=60$
F	$=P(1+i)^{t}$
P	$=\frac{F}{(1+i)^{t}}$
$\quad i$	$=0.00425$
X	$=$
P	
	$=\frac{X}{(1+0.00425)^{t}}$

Month	Present value of future repayment (P)	Future repayment (F)
1	$\frac{X}{1 \cdot 00425^{1}}$	X
2	$\frac{X}{1.00425^{2}}$	X
\ldots	\ldots	\ldots
60	$\frac{X}{1 \cdot 00425^{60}}$	X

Question 4 (cont'd.)

4(b) (cont'd.)

$$
\begin{aligned}
& \Rightarrow \quad \text { Geometric series with } n=60, a=\frac{X}{1 \cdot 00425} \text { and } r=\frac{1}{1 \cdot 00425} \\
& S_{n} \quad=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \Rightarrow S_{60} \quad=\frac{\frac{X}{1 \cdot 00425}\left(1-\frac{1}{1 \cdot 00425^{60}}\right)}{1-\frac{1}{1 \cdot 00425}} \\
& =\quad \frac{X(0.223713 . . .)}{0 \cdot 004232 \ldots} \\
& =\quad 52 \cdot 862274 \ldots X \\
& =6,011 \cdot 49 \\
& \Rightarrow \quad 52 \cdot 862274 \ldots X=6,011 \cdot 49 \\
& \Rightarrow \quad X \quad=\quad 113.719851 \ldots \\
& \cong \quad € 113.72
\end{aligned}
$$

or
(1) Amortisation:

$$
\begin{array}{rll}
\hline A & & \\
& & P \frac{i(1+i)^{t}}{(1+i)^{t}-1} \\
t & & 12 \times 5 \\
i & & =60 \text { months } \\
P & & 0 \cdot 00425 \\
X & & 6,011 \cdot 49 \\
\Rightarrow \quad X & & \frac{6,011.49(0.00425)(1+0.00425)^{60}}{(1+0.00425)^{60}-1} \\
& & \frac{6,011.49(0.00425)(1.00425)^{60}}{(1.00425)^{60}-1} \\
& & \cong 113.719851 \ldots \\
& & € 113.72
\end{array}
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)		Any relevant first step, e.g. finds correct $\#$ instalments [ans. $3 \times 12=36$] and/or \# repayments [ans. $5 \times 12=60$]. Recognises value of savings instalments after 36 months as a sum of a GP with some correct substitution into S_{n} formula.
Mid partial credit: (6 marks)	-	Finds correct value of savings instalments after 36 months (S_{36}) [ans. €18,988•51] or remainder of deposit [$€ 6,011 \cdot 49]$. Recognises sum of future repayments as a sum of a GP with some correct substitution into S_{n} formula. Writes down correct relevant formula for amortisation with some correct substitution into formula.
High partial credit: (8 marks)	-	Fully correct substitution into S_{n} or amortisation formula, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only if not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.
* No deduction applied for the omission of or incorrect use of units in questions involving currency.

The diagram shows part of the graph of a cubic function $f(x)$, where $x \in \mathbb{R}$.

5(a) Find the equation of $f(x)$.
(10D)
From the graph, the roots of $f(x)$ are $x=-0 \cdot 5, x=1$ and $x=3$

$$
\begin{array}{rlrl}
\Rightarrow \quad f(x) & & & k(x+0 \cdot 5)(x-1)(x-3) \\
& = & k(x+0 \cdot 5)\left(x^{2}-4 x+3\right) \\
& = & k\left(x^{3}-4 x^{2}+3 x+0 \cdot 5 x^{2}-2 x+1 \cdot 5\right) \\
& = & k\left(x^{3}-3 \cdot 5 x^{2}+x+1 \cdot 5\right) \\
& & \text { From the graph, } f(0) & =3 \\
\Rightarrow \quad f(x) & = & k\left(x^{3}-3 \cdot 5 x^{2}+x+1 \cdot 5\right) \\
\Rightarrow \quad f(0) & & k\left(0^{3}-3 \cdot 5(0)^{2}+0+1 \cdot 5\right) \\
\Rightarrow \quad k(1 \cdot 5) & = & 3 \\
\Rightarrow \quad k & = & 3 \\
\Rightarrow \quad f(x) & & 2 \\
& & = & 2\left(x^{3}-3 \cdot 5 x^{2}+x+1 \cdot 5\right) \\
\Rightarrow & & & 2 x^{3}-7 x^{2}+2 x+3
\end{array}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	- - -	Any relevant first step, e.g. writes down all three correct roots of $f(x)$, i.e. $x=-0 \cdot 5, x=1$ and $x=3$ and stops. Finds at least two correct factors of $f(x)$, i.e. $x+0 \cdot 5$ or $2 x+1, x-1$ and $x-3$. Uses graph to find $f(0)=3$.
Mid partial credit: (6 marks)	-	Finds $f(x)=k(x+0 \cdot 5)(x-1)(x-3)$, but fails to progress.
High partial credit: (8 marks)	-	Finds $f(x)=k\left(x^{3}-3 \cdot 5 x^{2}+x+1 \cdot 5\right)$, but fails to find correct value of k. Finds $f(x)=2 x^{3}-7 x^{2}+2 x+3$ without reference to $f(0)=3$.

Question 5 (cont'd.)

5(b) On the diagram above, draw the graph of the function $g(x)=2-f(x)$, where $x \in \mathbb{R}$.
(1) Graphical

or
(2) Calculation

$$
\begin{aligned}
\Rightarrow \quad f(x) & =2 x^{3}-7 x^{2}+2 x+3 \\
g(x) & =2-f(x) \\
& =2-\left(2 x^{3}-7 x^{2}+2 x+3\right) \\
& =2-2 x^{3}+7 x^{2}-2 x-3 \\
& =-2 x^{3}+7 x^{2}-2 x-1
\end{aligned}
$$

Substituting values into $g(x)$
Points $\quad=\quad(-1,10),(0,-1),(1,2),(2,7),(3,2),(4,-25)$
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. draws graph or sketches graph of $-f(x)$ on diagram.
	-	Finds correct equation of $g(x)=2-f(x)$, i.e. $g(x)=-2 x^{3}+7 x^{2}-2 x-1$.
High partial credit: (4 marks)	$-\quad$Draws correct shape of $g(x)$, but graph does not pass clearly through $(-0 \cdot 5,2)$, $(1,2),(3,2)$ and $(0,-1)$.	

Question 5 (cont'd.)

5(c) Use integration to find the average value of $g(x)$ over the interval $0 \leq x \leq 3, x \in \mathbb{R}$.
Average value of $g(x)$ in the interval $[a, b]$
$g(x)$

$$
\begin{aligned}
& =\quad \frac{1}{b-a} \int_{a}^{b} g(x) d x \\
& =\quad 2-f(x) \\
& =\quad 2-\left[2 x^{3}-7 x^{2}+2 x+3\right] \\
& =\quad-2 x^{3}+7 x^{2}-2 x+2-3 \\
& =\quad-2 x^{3}+7 x^{2}-2 x-1
\end{aligned}
$$

$\Rightarrow \quad$ Average value of $g(x)$

$$
\begin{aligned}
& =\frac{1}{3-0} \int_{0}^{3}\left(-2 x^{3}+7 x^{2}-2 x-1\right) d x \\
& =\left.\frac{1}{3}\left[-2 \frac{x^{4}}{4}+7 \frac{x^{3}}{3}-2 \frac{x^{2}}{2}-x\right]\right|_{0} ^{3} \\
& =\frac{1}{3}\left[-\frac{2}{4}(3)^{4}+\frac{7}{3}(3)^{3}-\frac{2}{2}(3)^{2}-3\right] \\
& =\frac{1}{3}\left[-\frac{81}{2}+63-9-3\right] \\
& =\frac{1}{3}[-40 \cdot 5+51] \\
& =\frac{1}{3}[10 \cdot 5] \\
& =\quad 3 \cdot 5
\end{aligned}
$$

** Accept students' answers for $f(x)$ from part (a) if not oversimplified.
Scale 10D (0, 4, 6, 8, 10)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (4 marks) \& \begin{tabular}{l}
- \\
\hline- \\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
Any relevant first step, e.g. writes down relevant formula for the average value of a function. Formulates integral (with correct limits), i.e. \(\frac{1}{3} \int_{0}^{3}\left(-2 x^{3}+7 x^{2}-2 x-1\right) d x\). \\
Integrates one term correctly.
\end{tabular} \\
\hline Mid partial credit: (6 marks) \& -

- \& Integrates all terms correctly, but omits $\frac{1}{b-a}$ from formula for average value and attempts to evaluate. Correct integration to find average value of $g(x)$, i.e. $\left.\frac{1}{3}\left[-2 \frac{x^{4}}{4}+7 \frac{x^{3}}{3}-2 \frac{x^{2}}{2}-x\right]\right|_{0} ^{3}$, but fails to evaluate or evaluates incorrectly or evaluates using incorrect limits.

\hline High partial credit: (8 marks) \& - \& | Correct integration to find average value of $g(x)$ with full substitution of limits, i.e. $\frac{1}{3}\left[-\frac{2}{4}(3)^{4}+\frac{7}{3}(3)^{3}-\frac{2}{2}(3)^{2}-3\right] \text { or similar, }$ |
| :--- |
| but fails to evaluate or evaluates incorrectly. |

\hline
\end{tabular}

6(a) Let $f(x)=\ln \sqrt{\frac{x+1}{x-1}}$, for $x>1$, where $x \in \mathbb{R}$.
(i) Use the rules of logarithms to find $f^{\prime}(x)$, the derivative of $f(x)$.

Give your answer in the form $\frac{a}{a-a x^{2}}$, where $a \in \mathbb{Z}$.

$$
\begin{aligned}
f(x) & =\ln \sqrt{\frac{x+1}{x-1}} \\
& =\ln \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} \\
& =\frac{1}{2}[\ln (x+1)-\ln (x-1)] \\
\Rightarrow \quad f^{\prime}(x) \quad & =\frac{1}{2}\left[\frac{1}{x+1}-\frac{1}{x-1}\right] \\
& =\frac{x-1-(x+1)}{2(x+1)(x-1)} \\
& =\frac{-2}{2\left(x^{2}-1\right)} \\
& =\frac{-1}{x^{2}-1} \\
& =\frac{1}{1-x^{2}}
\end{aligned}
$$

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. uses rules
	of logarithms to find $\ln \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} \underline{\text { or }}$	
	$\frac{1}{2}[\ln (x+1)-\ln (x-1)]$.	
	-	Differentiates one term correctly.
High partial credit: (7 marks)	Differentiates $f(x)$ correctly,	
	i.e. $f^{\prime}(x)=\frac{1}{2}\left[\frac{1}{x+1}-\frac{1}{x-1}\right]$, but fails	
	to find answer in required form.	

6(a) (cont'd.)
(ii) Hence, find the co-ordinates of the point at which the slope of the tangent to the curve $y=f(x)$ is parallel to the line $x+3 y-1=0$.

Slope, m

$$
\begin{array}{ll}
= & f^{\prime}(x) \tag{5C}\\
& =\frac{1}{1-x^{2}}
\end{array}
$$

Slope of tangent parallel to line $x+3 y-1=0$

$$
\begin{aligned}
& x+3 y-1=0 \\
& \Rightarrow \quad 3 y \quad=\quad-x+1 \\
& \Rightarrow \quad y=-\frac{1}{3} x+\frac{1}{3} \\
& y=m x+c \\
& \Rightarrow \quad m \quad=\quad-\frac{1}{3} \\
& \Rightarrow \frac{1}{1-x^{2}} \quad=\quad-\frac{1}{3} \\
& \Rightarrow 1-x^{2} \quad=\quad-3 \\
& \Rightarrow \quad-x^{2} \quad=\quad-3-1 \\
& x^{2} \quad=\quad-4 \\
& \Rightarrow \quad x^{2} \quad=\quad 4 \\
& \Rightarrow \quad x \quad=\quad \pm 2 \\
& \Rightarrow \quad x \quad=\quad 2 \quad \text { as } x>1 \\
& f(x) \quad=\quad \ln \sqrt{\frac{x+1}{x-1}}
\end{aligned}
$$

@ $x=2$
$\Rightarrow \quad f(2) \quad=\quad \ln \sqrt{\frac{2+1}{2-1}}$
$=\ln \sqrt{\frac{3}{1}}$
$=\quad \ln \sqrt{3}$ or $\frac{1}{2} \ln 3$
\Rightarrow Co-ordinates $\quad=\quad(2, \ln \sqrt{3})$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for the equation of a line.
	$-\quad$ Finds $m=-\frac{1}{3}$ or $f^{\prime}(x)=-\frac{1}{3}$, but fails	
	to progress.	

6(b) Find the co-ordinates of the point of inflection of the curve $y=\frac{x e^{x+1}}{e^{2-x}}$.

$$
\begin{align*}
y & =\frac{x e^{x+1}}{e^{2-x}} \tag{10D}\\
& =x e^{x+1-(2-x)} \\
& =x e^{x+1-2+x} \\
& =x e^{2 x-1} \\
\Rightarrow \quad \frac{d y}{d x} & =x \frac{d}{d x}\left(e^{2 x-1}\right)+\left(e^{2 x-1}\right) \frac{d}{d x}(x) \\
& =x\left(e^{2 x-1}\right)(2)+\left(e^{2 x-1}\right)(1) \\
& =(2 x+1) e^{2 x-1} \\
\frac{d^{2} y}{d x^{2}} & =(2 x+1) \frac{d}{d x}\left(e^{2 x-1}\right)+\left(e^{2 x-1}\right) \frac{d}{d x}(2 x+1) \\
& =(2 x+1)\left(e^{2 x-1}\right)(2)+\left(e^{2 x-1}\right)(2) \\
& =2(2 x+1+1) e^{2 x-1} \\
& =2(2 x+2) e^{2 x-1}
\end{align*}
$$

$$
\begin{aligned}
& \text { @ point of inflection } \\
& \frac{d^{2} y}{d x^{2}} \quad=0 \\
& \Rightarrow 2(2 x+2) e^{2 x-1} \quad=\quad 0 \\
& \Rightarrow \quad 2 x+2 \quad=\quad 0 \\
& \Rightarrow \quad 2 x \quad=\quad-2 \\
& \Rightarrow \quad x \quad=\quad-1 \\
& y=\frac{x e^{x+1}}{e^{2-x}} \\
& \text { @ } x=-1 \\
& y \quad=\frac{(-1) e^{-1+1}}{e^{2-(-1)}} \\
& =\frac{-e^{0}}{e^{2+1}} \\
& =-\frac{1}{e^{3}} \\
& \Rightarrow \text { Co-ordinates } \quad=\quad\left(-1,-\frac{1}{e^{3}}\right)
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	- - -	Any relevant first step, e.g. writes down $\frac{d^{2} y}{d x^{2}}=0$ at point of inflection and stops. Finds correctly $y=x e^{2 x-1}$. Differentiates one term correctly.
Mid partial credit: (6 marks)		Finds $\frac{d y}{d x}$ correctly (simplified or not), but fails to progress. Finds $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ correctly, but not equated to zero.
High partial credit: (8 marks)		Finds both $\frac{d y}{d x} \underline{\text { and }} \frac{d^{2} y}{d x^{2}}$ correctly and equates to zero, but fails to finish fully, $e . g$. finds correct value of x co-ordinate, but fails to find or finds incorrect value of y co-ordinate.

Answer all three questions from this section.

7(a) The diagram shows a right circular cone of radius 9 cm and height 15 cm . A smaller inverted cone of height h and radius r is inscribed within the larger cone.
(i) Using similar triangles, or otherwise, show that

$$
\begin{equation*}
 \tag{5C}
\end{equation*}
$$

... as both Δ s have common angle α, 90° angles and hence, the third angles in both $\Delta \mathrm{s}$ are equal

Scale 5C (0, 2, 4, 5)
\(\left.$$
\begin{array}{|lll|}\hline \text { Low partial credit: (2 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. identifies } \\
\text { one pair of corresponding sides or }\end{array}
$$

\& writes down \tan \alpha=\frac{9}{15} .\end{array}\right\}\)| | Explains why triangles are similar. |
| :--- | :--- |
| High partial credit: (4 marks) | $-\quad$ Finds $\frac{9}{15}=\frac{r}{15-h}$, but fails to finish |
| | $\underline{\text { or finish incorrectly. } .}$ |

(ii) Express the volume of the smaller cone, in terms of π and r, in its simplest form.

$$
\begin{aligned}
V_{\text {small }} & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi r^{2}\left(\frac{45-5 r}{3}\right) \\
& =\frac{\pi r^{2}(45-5 r)}{9} \mathrm{~cm}^{3} \text { or } \frac{45 \pi r^{2}-5 \pi r^{3}}{9} \mathrm{~cm}^{3}
\end{aligned}
$$

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for the volume of a cone.
High partial credit: (4 marks)	-	Substitutes fully correctly into volume
		formula, i.e. $V_{\text {small }}=\frac{1}{3} \pi r^{2}\left(\frac{45-5 r}{3}\right)$, but
	fails to finish or finishes incorrectly.	

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units (' $\mathrm{cm}^{3 '}$) - apply only once to each section (a), (b), (c), etc. of question.

7(a) (cont'd.)
(iii) Find the maximum volume of the smaller cone, in terms of π.

$$
\begin{array}{rlr}
V_{\text {small }} & =\frac{45 \pi r^{2}-5 \pi r^{3}}{9} & \ldots \text { answer from part (a)(ii) } \\
\frac{d V}{d r} & =\frac{d}{d r}\left(\frac{45 \pi r^{2}-5 \pi r^{3}}{9}\right) \\
& =\frac{90 \pi r-15 \pi r^{2}}{9} &
\end{array}
$$

Maximum volume when $\frac{d V}{d r}=0$

$$
\Rightarrow \quad \frac{90 \pi r-15 \pi r^{2}}{9} \quad=\quad 0
$$

$$
\Rightarrow \quad 90 \pi r-15 \pi r^{2} \quad=\quad 0
$$

$$
\Rightarrow \quad 15 \pi r^{2} \quad=\quad 90 \pi r
$$

$$
\Rightarrow \quad r \quad=\frac{90}{15}
$$

$$
=6 \mathrm{~cm}
$$

$$
V_{\text {small }} \quad=\frac{45 \pi r^{2}-5 \pi r^{3}}{9}
$$

$$
\Rightarrow \quad V_{\text {small (max) }} \quad=\quad \frac{45 \pi(6)^{2}-5 \pi(6)^{3}}{9}
$$

$$
=\frac{1,620 \pi-1,080 \pi}{9}
$$

$$
=\frac{540 \pi}{9}
$$

$$
=60 \pi \mathrm{~cm}^{3}
$$

** Accept students' answers from part (a)(ii) for $V_{\text {small }}$ if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down 'Maximum volume when $\frac{d V}{d r}=0$ '. Differentiates one term correctly.
Mid partial credit: (6 marks)		Differentiates correctly to find $\frac{d V}{d r}$, but fails to progress.
High partial credit: (8 marks)	-	Finds correct value of r, but fails to find or finds incorrect value for $V_{\text {small (max) }}$. Finds correct $V_{\text {small (max) }}$, but not in required form.

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units (' cm^{3} ') - apply only once to each section (a), (b), (c), etc. of question.

7(a) (cont'd.)
(iv) What fraction of the larger cone is unoccupied?

$$
\begin{aligned}
V_{\text {cone }} & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(9)^{2}(15) \\
& =\frac{1,215 \pi}{3} \\
& =405 \pi \\
V_{\text {large }} & \\
& =60 \pi \\
\Rightarrow \quad V_{\text {small (max) }} & \text { Volume unoccupied } \\
& =405 \pi-60 \pi \\
& =345 \pi \mathrm{~cm}^{3} \\
& =\frac{345 \pi}{405 \pi} \\
& =\frac{69}{81} \\
& =\frac{23}{27}
\end{aligned}
$$

** Accept students' answers from part (a)(iii) for $V_{\text {small (max) }}$ if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for the volume of a cone with some correct substitution.				
	-	Finds correct value for $V_{\text {large. }}$	$	$		Finds correct value of volume unoccupied, [ans. 345π], but fails to finish or finishes incorrectly.
:---	:---					
High partial credit: (4 marks)	$-\quad$Finds fraction of larger cone occupied [ans. $\frac{4}{27}$], but fails to finish or finishes					
	incorrectly, i.e. $1-\frac{4}{27}=\frac{23}{27}$.					

7(b) A motorised winch is used to pull a boat into its berth position. The winch cable is attached to the bow (B) of the boat, as shown. The winch (W) is located on the quay 3 m above the bow of the boat and $|\angle W O B|$ is 90°.
The winch operates at a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$.

(i) Let l be the length of the winch cable, $|W B|$.

Find x, the distance of the boat from the quay wall, in terms of l.
Using Pythagoras' theorem

$$
\begin{array}{rll}
|\mathrm{Hyp}|^{2} & = & |\mathrm{Opp}|^{2}+|\mathrm{Adj}|^{2} \\
|W B| & = & l \\
|O B| & = & x \\
|W O| & = & 3 \\
\Rightarrow \quad l^{2} & & x^{2}+(3)^{2} \\
\Rightarrow x^{2} & & l^{2}-9 \\
\Rightarrow \quad x \quad & & \sqrt{l^{2}-9} \text { or }\left(l^{2}-9\right)^{\frac{1}{2}} \underline{\text { or }}\left(l^{2}-9\right)^{0 \cdot 5}
\end{array}
$$

Scale 5B (0, 2, 5)
Partial credit: (2 marks) - Substitutes correctly into Pythagoras’ theorem, i.e. $l^{2}=x^{2}+(3)^{2}$, but fails to isolate or isolates x incorrectly.
(ii) Find the rate of change of x with respect to l.

$$
\begin{aligned}
\Rightarrow \quad & =\sqrt{l^{2}-9} \\
\frac{d x}{d l} & =\frac{d}{d l}\left(l^{2}-9\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left(l^{2}-9\right)^{-\frac{1}{2}}(2 l) \\
& =\frac{l}{\sqrt{l^{2}-9}}
\end{aligned}
$$

... answer from part (b)(i)
** Accept students' answers from part (b)(i) for x if not oversimplified.
Scale 5B (0, 2, 5)

$$
\begin{array}{ll}
\hline \text { Partial credit: }(2 \text { marks }) & \text { Some correct relevant differentiation, } \\
& \text { but incomplete, e.g. } \frac{d x}{d l}=\frac{1}{2}\left(l^{2}-9\right)^{-\frac{1}{2}}, \\
& \frac{1}{2}\left(l^{2}-9\right)^{\frac{1}{2}}(2 l) \text { or }\left(l^{2}-9\right)^{-\frac{1}{2}}(2 l) . \\
\hline
\end{array}
$$

7(b) (cont’d.)
(iii) Hence, find the speed at which the boat is approaching the quay wall when the length of the winch cable is 13 m .

$$
\begin{aligned}
\frac{d l}{d t} & & 0 \cdot 5 \mathrm{~m} / \mathrm{s} \\
x & & \sqrt{l^{2}-9} \\
\Rightarrow \quad \frac{d x}{d l} & & \frac{l}{\sqrt{l^{2}-9}} \\
\frac{d x}{d t} & & \frac{d x}{d l} \times \frac{d l}{d t} \\
\Rightarrow \quad \frac{d x}{d t} & & \frac{l}{\sqrt{l^{2}-9}} \times 0.5 \\
& & \frac{l}{2 \sqrt{l^{2}-9}}
\end{aligned}
$$

@ $l=13$
$\Rightarrow \frac{d x}{d t} \quad=\frac{13}{2 \sqrt{(13)^{2}-9}}$
$=\frac{13}{2 \sqrt{169-9}}$
$=\frac{13}{2 \sqrt{160}}$
$=\frac{13 \sqrt{10}}{80}$
$=0.513870 \ldots$
$\cong 0.51 \mathrm{~m} / \mathrm{s}$ or $0.514 \mathrm{~m} / \mathrm{s}$ or $0.5139 \mathrm{~m} / \mathrm{s}$
** Accept students’ answers from part (b)(ii) for $\frac{d x}{d l}$ if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	- -	Any relevant first step, e.g. writes down $\frac{d l}{d t}=0.5 \underline{\text { or }} \frac{d x}{d t}=\frac{d x}{d l} \times \frac{d l}{d t} \underline{\text { or similar }}$. Mentions a relevant rate of change, i.e. $\frac{d x}{d t}$ and/or $\frac{d x}{d l} \underline{\text { and/or }} \frac{d l}{d t}$.
Mid partial credit: (6 marks)		Finds $\frac{d x}{d t}=\frac{l}{\sqrt{l^{2}-9}} \times 0.5$ or $\frac{l}{2 \sqrt{l^{2}-9}}$, but fails to progress.
High partial credit: (8 marks)		Finds $\frac{d x}{d t}=\frac{13}{2 \sqrt{(13)^{2}-9}}$, but fails to evaluate or evaluates incorrectly.

* Deduct 1 mark off correct answer only $\mathbf{(}$ if final answer is not rounded or incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units (' m / s ') - apply only once to each section (a), (b), (c), etc. of question.

8(a) In the 100-metre race, sprinters typically reach their top speed about halfway through the race and try to maintain that speed for as long as possible.
A student analysed a sprinter's performance over the course of a particular race and determined that the speed of the sprinter can be approximated by the following model:

$$
v(t)= \begin{cases}0, & 0 \leq t<0 \cdot 15 \\ -0 \cdot 6 t^{2}+5 \cdot 4 t-k, & 0 \cdot 15 \leq t<4 \cdot 5 \\ 11 \cdot 3535, & t \geq 4 \cdot 5\end{cases}
$$

where v is the speed in metres per second, t is the time in seconds from the starting signal and k is a constant.
(i) Find the value of k.

$$
\begin{array}{lll}
& \text { Consider } 0 \cdot 15 \leq t<4 \cdot 5 \\
v(t)
\end{array} \quad=\quad-0 \cdot 6 t^{2}+5 \cdot 4 t-k
$$

Scale 5C (0, 2, 4, 5)

| Low partial credit: (2 marks) | $-\quad$Any relevant first step, e.g. writes down
 $v(4 \cdot 5)=11 \cdot 3535$ and stops. |
| :--- | :--- | :--- |
| | $-\quad$Substitutes correctly into $v(t)$,
 i.e. $v(4 \cdot 5)=-0 \cdot 6(4 \cdot 5)^{2}+5 \cdot 4(4 \cdot 5)-k$,

 but fails to equate to $11 \cdot 3535$. |
| High partial credit: (4 marks) | -Equates correctly $v(4 \cdot 5)=11 \cdot 3535$,
 i.e. $-0 \cdot 6(4 \cdot 5)^{2}+5 \cdot 4(4 \cdot 5)-k=11 \cdot 3535$,
 but fails to find or finds incorrect value
 of k. |

(ii) Sketch the graph of v as a function of t for the first 7 seconds of the race.

(1)	Points:	$=$	$-0 \cdot 6 t^{2}+5 \cdot 4 t-0 \cdot 7965$... answer from part (a)(i)
	$v(t)$			
	$\begin{aligned} & @ t=0 \cdot 15 \\ & v(0 \cdot 15) \end{aligned}$	$=$	0	
\Rightarrow	$@ t=1$$v(1)$			
		=	$-0 \cdot 6(1)^{2}+5 \cdot 4(1)-0 \cdot 7965$	
		$=$	$-0 \cdot 6+5 \cdot 4-0 \cdot 7965$	
		$=$	4.0035	
\Rightarrow	$\begin{aligned} & @ t=2 \\ & v(2) \end{aligned}$			
		$=$	$-0 \cdot 6(2)^{2}+5 \cdot 4(2)-0 \cdot 7965$	
		$=$	$-2 \cdot 4+10 \cdot 8-0 \cdot 7965$	
		$=$	$7 \cdot 6035$	
\Rightarrow	$\begin{aligned} & @ t=3 \\ & v(3) \end{aligned}$			
		$=$	$-0 \cdot 6(3)^{2}+5 \cdot 4(3)-0 \cdot 7965$	
		$=$	$-5 \cdot 4+16 \cdot 2-0 \cdot 7965$	
		$=$	$10 \cdot 0035$	

Question 8 (cont'd.)

8(a) (ii) (cont'd.)

$$
\left.\begin{array}{rll}
& \text { @ } t=4 & \\
\\
\Rightarrow \quad v(4) & & -0 \cdot 6(4)^{2}+5 \cdot 4(4)-0 \cdot 7965 \\
& = & -9 \cdot 6+21.6-0 \cdot 7965 \\
& & 11 \cdot 2035 \\
& \text { @ } t=4 \cdot 5 & v(4 \cdot 5)
\end{array} \quad=\quad-0 \cdot 6(4 \cdot 5)^{2}+5 \cdot 4(4 \cdot 5)-0 \cdot 7965\right)
$$

** Accept students' answers from part (a)(i) for $v(t)$ if not oversimplified.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. evaluates $v(t)$ for any value between $0 \cdot 15$ and $4 \cdot 5$. Shows correct graph of $v(t)$ for $t=4 \cdot 5$ to $t=7$ (straight line) only.
	-	Evaluates $v(t)$ for several values between $0 \cdot 15$ and $4 \cdot 5$, but fails to plot graph or plots incorrect graph.
Mid partial credit: (6 marks)		Graph almost fully correct, but with one error/omission, e.g. graph begins rising from $(0,0)$ or straight lines(s) used instead of a curve.
High partial credit: (8 marks)	-	

8(a) (cont'd.)
(iii) Find the distance travelled by the sprinter in the first 4.5 seconds of the race.
(10D*)

$$
\begin{aligned}
& \text { Distance travelled in the interval [0, 4•5] } \\
& =0+\int_{0.15}^{4.5} v(t) d t \\
& v(t) \\
& =\quad-0 \cdot 6 t^{2}+5 \cdot 4 t-0.7965 \\
& =\int_{0.15}^{4 \cdot 5}\left(-0 \cdot 6 t^{2}+5 \cdot 4 t-0 \cdot 7965\right) d t \\
& =\quad-0 \cdot 6 \frac{t^{3}}{3}+5 \cdot 4 \frac{t^{2}}{2}-\left.0 \cdot 7965 t\right|_{0.15} ^{4.5} \\
& =\quad-0 \cdot 2 t^{3}+2 \cdot 7 t^{2}-\left.0 \cdot 7965 t\right|_{0.15} ^{4 \cdot 5} \\
& =\left[-0 \cdot 2(4 \cdot 5)^{3}+2 \cdot 7(4 \cdot 5)^{2}-0 \cdot 7965(4 \cdot 5)\right] \\
& -\left[-0 \cdot 2(0 \cdot 15)^{3}+2 \cdot 7(0 \cdot 15)^{2}-0 \cdot 7965(0 \cdot 15)\right] \\
& =\quad[-18 \cdot 225+54 \cdot 675-3 \cdot 58425] \\
& -[-0 \cdot 000675+0 \cdot 06075-0 \cdot 119475] \\
& =\quad[32 \cdot 86575]-[-0.0594] \\
& =32.92515 \mathrm{~m}
\end{aligned}
$$

** Accept students’ answers from part (a)(i) for $v(t)$ if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	- 	Any relevant first step, e.g. writes down relevant integration formula for distance i.e. $s(t)=\int v(t) d t$ and stops. Some correct integration and stops or fails to progress.
Mid partial credit: (6 marks)	-	Integrates $v(t)$ correctly to find $s(t)$, i.e. $s(t)=-0 \cdot 6 \frac{t^{3}}{3}+5 \cdot 4 \frac{t^{2}}{2}-0.7965 t$, but no limits or incorrect limits used.
High partial credit: (8 marks)	-	Integrates $v(t)$ correctly with correct limits, i.e. $s(t)=-0 \cdot 6 \frac{t^{3}}{3}+5 \cdot 4 \frac{t^{2}}{2}-\left.0 \cdot 7965 t\right\|_{0.15} ^{4.5}$, but fails to evaluate or evaluates incorrectly

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m') - apply only once to each section (a), (b), (c), etc. of question.

8(a) (cont'd.)
(iv) Hence, find the sprinter's finishing time for the race. Give your answer correct to three decimal places.

Distance travelled in the interval [0, 4•5]

$$
=\quad 32 \cdot 92515 \mathrm{~m}
$$

... answer from part (a)(iii)
Distance travelled in the interval [$4 \cdot 5$, end of race]

$$
\begin{aligned}
& =\quad 100-32 \cdot 92515 \\
& =67 \cdot 07485 \mathrm{~m} \\
& =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{\text { Distance }}{\text { Speed }} \\
& =\quad 11 \cdot 3535 \\
& =\quad \frac{67 \cdot 07485}{11 \cdot 3535} \\
& =\quad 5 \cdot 907856 \ldots \\
& =\quad 4 \cdot 5+5 \cdot 907856 . \\
& =10 \cdot 407856 \ldots \\
& \cong \quad 10 \cdot 408 \mathrm{~s}
\end{aligned}
$$

$$
\Rightarrow \quad \text { Time } \quad=\quad \frac{\text { Distance }}{\text { Speed }}
$$

$$
v(t \geq 4 \cdot 5) \quad=\quad 11.3535
$$

$$
\Rightarrow \quad t(t \geq 4.5) \quad=\quad \frac{67.07485}{11.3535}
$$

$$
\Rightarrow \quad \text { Total time } \quad=\quad 4 \cdot 5+5 \cdot 907856 \ldots
$$

** Accept students' answers from part (a)(iii) for distance travelled in the interval $[0,4 \cdot 5]$ if not oversimplified.

Scale 5C* (0, 2, 4, 5)

| Low partial credit: (2 marks) | $-\quad$Any relevant first step, e.g. writes down
 relevant formula for speed with some
 correct substitution. |
| :--- | :--- | :--- |
| | $-\quad$Finds distance travelled after $4 \cdot 5$ seconds
 [ans. $100-32 \cdot 92515$ or answer from
 part (iii)]. |
| High partial credit: (4 marks) $\quad-\quad$ Finds correct value of $t(t \geq 4 \cdot 5)$ | |
| | [ans. $5 \cdot 908,5 \cdot 907856 \ldots$, or $\frac{67 \cdot 07485}{11 \cdot 3535}$], |
| | but fails to finish or finishes incorrectly.. |

* Deduct 1 mark off correct answer only $\mathbf{1}$ if final answer is not rounded or incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units (' s ') - apply only once to each section (a), (b), (c), etc. of question.

8(b) A model for an Olympic-standard 100 m sprinter was developed by mathematicians.
The speed of the sprinter may be calculated using the function:

$$
w(t)=11 \cdot 7\left(1-e^{-0.8 t}\right)+0 \cdot 03\left(1-e^{0.3 t}\right)
$$

where t is the time in seconds from the starting signal.
(i) Find the maximum speed of the sprinter, correct to two decimal places.
(10D*)

$$
\begin{aligned}
& \text { Maximum speed when } \frac{d w}{d t}=0 \\
& w(t) \quad=\quad 11 \cdot 7\left(1-e^{-0.8 t}\right)+0.03\left(1-e^{0.3 t}\right) \\
& \Rightarrow \quad \frac{d w}{d t} \quad=\frac{d}{d t}\left[11 \cdot 7\left(1-e^{-0.8 t}\right)+0 \cdot 03\left(1-e^{0.3 t}\right)\right] \\
& =11 \cdot 7\left[0-\left(e^{-0.8 t}\right)(0 \cdot 8)\right]+0 \cdot 03\left[0-\left(e^{0.3 t}\right)(0 \cdot 3)\right] \\
& =11 \cdot 7(0 \cdot 8) e^{-0.8 t}-0 \cdot 03(0 \cdot 3) e^{0.3 t} \\
& =9 \cdot 36 e^{-0.8 t}-0.009 e^{0.3 t} \\
& =0 \\
& \Rightarrow 9 \cdot 36 e^{-0.8 t}-0.009 e^{0.3 t}=0 \\
& \Rightarrow 9 \cdot 36 e^{-0.8 t}=0.009 e^{0.3 t} \\
& \Rightarrow \frac{e^{0.3 t}}{e^{-0.8 t}} \quad=\frac{9.36}{0.009} \\
& \Rightarrow e^{0.3 t+0.8 t}=1,040 \\
& \Rightarrow \quad e^{1 \cdot 1 t} \quad=\quad 1,040 \\
& \Rightarrow \quad \operatorname{In}\left(e^{1 \cdot 1 t}\right) \quad=\quad \operatorname{In} 1,040 \\
& \Rightarrow \quad 1 \cdot 1 t \quad=\quad \operatorname{In} 1,040 \\
& \Rightarrow \quad t \quad=\frac{\ln 1,040}{1 \cdot 1} \\
& =6.315432 \ldots \mathrm{~s}
\end{aligned}
$$

Maximum speed when $t=6 \cdot 315432 \ldots$
$w(t)=11 \cdot 7\left(1-e^{-0.8 t}\right)+0.03\left(1-e^{0.3 t}\right)$
$\Rightarrow \quad w(6 \cdot 315432 \ldots) \quad=\quad 11 \cdot 7\left(1-e^{-0.8(6 \cdot 315432 \ldots .)}\right)+0 \cdot 03\left(1-e^{0.3(6 \cdot 315432 \ldots)}\right)$
$=11 \cdot 7(0 \cdot 993605 \ldots)+0 \cdot 03(-5 \cdot 650086 \ldots)$
$=11 \cdot 625186 \ldots-0 \cdot 169502 \ldots$
$=\quad 11.455683 \ldots$
$\cong \quad 11.46 \mathrm{~m} / \mathrm{s}$
Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down 'Maximum speed when $\frac{d w}{d t}=0 ’$.
	-	Differentiates one term correctly, e.g. $11 \cdot 7\left[0-\left(e^{-0.8 t}\right)(0 \cdot 8)\right]$.
Mid partial credit: (6 marks)		Differentiates correctly to find $\frac{d w}{d t}$ and
		equates $\frac{d w}{d t}=0$, but fails to isolate or isolates t incorrectly.
High partial credit: (8 marks)	$-\quad$Finds correct value of t [ans. 6•315432...], but fails to find $\underline{\text { or finds incorrect value }}$ for maximum speed.	

* Deduct 1 mark off correct answer only $\boldsymbol{1}$ if final answer is not rounded or incorrectly rounded or $\boldsymbol{2}^{2}$ for the omission of or incorrect use of units (' m / s ') - apply only once to each section (a), (b), (c), etc. of question.

8(b) (cont'd.)
(ii) Find an expression for the distance travelled by the sprinter after time t.

$$
\begin{align*}
& s(t) \\
& =\quad \int w(t) d t \tag{10C}\\
& w(t) \\
& \Rightarrow \quad s(t) \\
& =\quad 11 \cdot 7\left(1-e^{-0.8 t}\right)+0.03\left(1-e^{0.3 t}\right) \\
& =\quad \int\left[11 \cdot 7\left(1-e^{-0.8 t}\right)+0 \cdot 03\left(1-e^{0.3 t}\right)\right] d t \\
& =\quad 11 \cdot 7\left(t-\frac{e^{-0.8 t}}{-0.8}\right)+0 \cdot 03\left(t-\frac{e^{0.3 t}}{0 \cdot 3}\right)+c \\
& =\quad 11 \cdot 7 t+14 \cdot 625 e^{-0.8 t}+0.03 t-0 \cdot 1 e^{0.3 t}+c \\
& =11 \cdot 73 t+14 \cdot 625 e^{-0.8 t}-0 \cdot 1 e^{0.3 t}+c \\
& \Rightarrow \quad \begin{array}{l}
\quad @ t=0, s=0 \\
s(0)
\end{array} \\
& =\quad 11 \cdot 73(0)+14 \cdot 625 e^{-0 \cdot 8(0)}-0 \cdot 1 e^{0 \cdot 3(0)}+c \\
& =14 \cdot 625 e^{0}-0 \cdot 1 e^{0}+c \\
& =14 \cdot 625(1)-0 \cdot 1(1)+c \\
& =14.525+c \\
& =0 \\
& \Rightarrow \quad 14.525+c \quad=\quad 0 \\
& \Rightarrow \quad c \quad=\quad-14.525 \\
& \Rightarrow s(t)=11 \cdot 73 t+14 \cdot 625 e^{-0.8 t}-0 \cdot 1 e^{0.3 t}-14 \cdot 525
\end{align*}
$$

Scale 10C (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down relevant integration formula for distance
	$-\quad$i.e. $s(t)=\int w(t) d t$ and stops.	
	Some correct integration and stops or fails to progress.	
High partial credit: (7 marks)	$-\quad$Integrates $w(t)$ correctly to find $s(t)$, i.e. $s(t)=11 \cdot 73 t+14 \cdot 625 e^{-0.8 t}-0 \cdot 1 e^{0 \cdot 3 t}$ but fails to find or finds incorrect value of c.	

Question 8 (cont'd.)

8(b) (cont'd.)
(iii) Hence, show that the sprinter completes the race in less than 10 seconds.

	$s(t)$	$=$	$11 \cdot 73 t+14.625 e^{-0.8 t}-0 \cdot 1 e^{0.3 t}-14.525$
\Rightarrow	$\begin{aligned} & @ t=10 \\ & s(10) \end{aligned}$		
		=	$\begin{aligned} & 11 \cdot 73(10)+14 \cdot 625 e^{-0 \cdot 8(10)}-0 \cdot 1 e^{0 \cdot 3(10)}-14 \cdot 525 \\ & 117 \cdot 3+14 \cdot 625 e^{-8}-0 \cdot 1 e^{3}-14 \cdot 525 \end{aligned}$
		=	$117 \cdot 3+0 \cdot 004906 \ldots-2 \cdot 008553 \ldots-14 \cdot 525$
		$=$	100.771352...
as	100.771352...	>	100
	$t_{\text {race }}$	$<$	10 s

** Accept students' answers from part (b)(ii) for $s(t)$ if not oversimplified.
Scale 5D (0, 2, 3, 4, 5)
$\left.\begin{array}{|lll|}\hline \text { Low partial credit: (2 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. writes down } \\ \text { condition required, 'if } s(10)>100, \text { then }\end{array} \\ & - & \begin{array}{l}t_{\text {race }}<10 \text { '. }\end{array} \\ \text { Some correct substitution into } s(10), \\ \text { and stops or fails to progress. }\end{array}\right]$

9(a) A circular disc is divided into 12 unequal sectors whose areas are in arithmetic sequence. The area of the largest sector is twice that of the smallest sector. The radius of the disc is r and the acute angle in the smallest sector is θ, in degrees, as shown. The increase in angle in subsequent sectors is λ.
(i) Find the areas of the smallest and the largest sectors, in terms of r and θ.

$$
\begin{aligned}
\text { Area of smallest sector } & =\pi r^{2}\left(\frac{\theta}{360}\right) \\
& =\frac{\pi r^{2} \theta}{360} \\
\Rightarrow \text { Area of largest sector } & =2\left(\frac{\pi r^{2} \theta}{360}\right) \underline{\text { or }} \pi r^{2}\left(\frac{2 \theta}{360}\right) \\
& =\frac{\pi r^{2} \theta}{180}
\end{aligned}
$$

(5B)

Scale 5B (0, 2, 5)

| Partial credit: (2 marks) | $-\quad$Any relevant first step, e.g. writes down
 correct formula for the area of a sector. |
| :--- | :--- | :--- |
| | $-\quad$ Finds correct area of one sector only. |

(ii) Find an expression for the acute angle of the nth sector in the arithmetic sequence and hence, write down the size of the angle in the largest sector in terms of θ and λ.
(1) Acute angle of the nth sector

$$
\begin{array}{rlll}
T_{n} & & a+(n-1) d \\
& & & \\
& & & \theta \\
d & & & \lambda \\
\Rightarrow & T_{n} & & \\
& & \theta+(n-1) \lambda
\end{array}
$$

(2) Size of the angle in the largest sector

$$
\begin{array}{lll}
\Rightarrow & T_{n} & = \\
& =\theta+(n-1) \lambda \\
T_{12} & = & \theta+(12-1) \lambda \\
& & \theta+11 \lambda
\end{array}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for T_{n} with some correct
	-	substitution $(a$ or $d)$. Correctly identifies $a=\theta$ and $d=\lambda$ with some correct substitution into formula for T_{n} (not stated).
	$-\quad$Finds expression for T_{n} by inspection or calculation and stops.	
High partial credit: (4 marks)	$-\quad$Finds correct expression for T_{n}, but fails to find or finds incorrect expression for T_{12}.	

9(a) (cont'd.)
(iii) Find an equation for the sum of the acute angles in all of the sectors, in terms of θ and λ.
(1) $\quad \underline{S}_{\underline{n}}$, the sum of the first n angles

$$
\begin{array}{rlrl}
S_{n} & & = & \frac{n}{2}[2 a+(n-1) d] \\
& & & \\
& & & 12 \\
a & & & \theta \\
d & & & \\
\Rightarrow S_{12} & & \frac{12}{2}[2 \theta+(12-1) \lambda] \\
& & & 6[2 \theta+11 \lambda] \\
& & & 12 \theta+66 \lambda
\end{array}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for S_{n} with some correct substitution (a or d). Correctly identifies $a=\theta$ and $d=\lambda$ with some correct substitution into formula for S_{n} (not stated).
High partial credit: (4 marks)	-	Finds correct expression for S_{n}, [ans. $\frac{n}{2}[2 \theta+(n-1) \lambda]$, but fails to evaluate or incorrectly evaluates S_{12}. Finds correct expression for S_{12}, [ans. $\frac{12}{2}[2 \theta+(12-1) \lambda]$, but fails to finish or finishes incorrectly.

9(a) (cont'd.)
(iv) Use your answers to parts (ii) and (iii) above to find, in degrees, the value of θ.

** Accept students’ answers from previous parts if not oversimplified.
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down one expression in terms of θ and λ, i.e. $\theta+11 \lambda=2 \theta$ or $12 \theta+66 \lambda=360^{\circ}$. Finds λ in terms of θ, i.e. $\frac{\theta}{11}$ [Method $\left.\mathbf{\oplus}\right]$, and stops or fails to progress.
High partial credit: (4 marks	-	Finds λ in terms of θ, i.e. $\frac{\theta}{11}$, and finds second expression, i.e. $12 \theta+66 \lambda=360^{\circ}$ [Method ©], but fails to finish or finishes incorrectly. Finds two expressions in terms of θ and λ, with work towards finding θ [Method 2], but fails to finish or finishes incorrectly.

Question 9 (cont'd.)

9(b) An equilateral triangle can be subdivided into four smaller equilateral triangles of equal area. The first three patterns in a sequence of patterns are shown below. In each successive pattern, the unshaded triangle is subdivided into smaller equal triangles.

(i) Complete the table below to show the number of shaded and unshaded equilateral triangles in each pattern.

Pattern	1	2	3	4	5
Number of shaded triangles	1	4	$\underline{13}$	$\underline{40}$	$\underline{121}$
Number of unshaded triangles	3	$\underline{9}$	$\underline{27}$	$\underline{81}$	$\underline{243}$

Scale 5C (0, 2, 4, 5)

Low partial credit: $(2 \mathrm{marks})$	-	One, two or three correct entries.
High partial credit: $(4 \mathrm{marks})$	-	Four, five or six correct entries.

(ii) Write an expression in n for the number of unshaded triangles in the nth pattern in the sequence.

Number of unshaded triangles	3	$\underline{9}$	$\underline{\mathbf{2 7}}$	$\underline{\mathbf{8 1}}$	$\underline{\mathbf{2 4 3}}$

Unshaded triangles: $3,9,27,81,243, \ldots$
$\Rightarrow \quad$ Geometric sequence

$$
\begin{aligned}
T_{n} & =a r^{n-1} \\
& =3 \\
r & \\
& =3 \\
\Rightarrow \quad T_{n} & \\
& \\
& \\
& \\
& \\
& \\
& 3\left(3^{n-1}\right) \\
& 3^{n+n-1}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for T_{n} with some correct
	-	substitution $(a$ or r). Recognises terms in the sequence as 3 to the power of $1,2,3$, i.e. $3^{1}, 3^{2}, 3^{3}$, etc.,
	-	but not the term in the nth pattern $\left[3^{n}\right]$. Correctly identifies pattern as geometric sequence with correct a and r and some correct substitution into formula for T_{n} (not stated).
High partial credit: (4 marks)	$-\quad$Fully correct substitution into T_{n}, i.e. $T_{n}=3\left(3^{n-1}\right)$, but fails to finish or finishes incorrectly..	

9(b) (cont'd.)
(iii) Find an expression, in n, for the number of shaded triangles in the nth pattern in the sequence.

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down $T_{2}=1+3^{1}, T_{3}=1+3^{1}+3^{2}$, etc. in the pattern.
	$-\quad$Identifies that 3^{n-1} added to previous term to get current term.	
Mid partial credit: (6 marks)	$-\quad$Finds $T_{n}=\operatorname{sum}\left(1+3^{1}+3^{2}+\ldots+3^{n-1}\right)$, but fails to progress.	
High partial credit: (8 marks)	$-\quad$Finds $T_{n}=\operatorname{sum}\left(1+3^{1}+3^{2}+\ldots+3^{n-1}\right)$ with some correct substitution $(a \underline{\text { or }} r)$ into S_{n} formula, but fails to finish $\underline{\text { or }}$ finishes incorrectly.	

9(b) (cont'd.)
(iv) Find the fraction of the overall area that is shaded in the 5th pattern.

$$
\begin{aligned}
\text { Area of 1st pattern } & =\frac{1}{4}(1) \\
\text { Area of 2nd pattern } & =\frac{1}{4}+\frac{1}{4}\left(\frac{1}{4}\right)(3) \\
& =\frac{1}{4}+\frac{3}{16} \\
\text { Area of 3rd pattern } & =\frac{1}{4}+\frac{1}{4}\left(\frac{1}{4}\right)(3)+\frac{1}{4}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)(9) \\
& =\frac{1}{4}+\frac{3}{16}+\frac{9}{64} \\
\text { Pattern: } & =\text { (1) } \frac{1}{4}, \quad \text { (2) } \frac{1}{4}+\frac{3}{16}, \text { (3) } \frac{1}{4}+\frac{3}{16}+\frac{9}{64}, \ldots
\end{aligned}
$$

(1) Continuing pattern:

$$
\begin{aligned}
\Rightarrow \quad \text { Area of 4th pattern } & =\frac{1}{4}+\frac{3}{16}+\frac{9}{64}+\frac{9(3)}{64(4)} \\
\Rightarrow \quad \text { Area of 5th pattern } & =\frac{1}{4}+\frac{3}{16}+\frac{9}{64}+\frac{27}{256}+\frac{27(3)}{256(4)} \\
& =\frac{1}{4}+\frac{3}{16}+\frac{9}{64}+\frac{27}{256}+\frac{81}{1,024} \\
& =\frac{256+3(64)+9(16)+27(4)+81}{1,024} \\
& =\frac{781}{1,024}
\end{aligned}
$$

or
(2) Sum of geometric progression:

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad n=5, a=\frac{1}{4}, r=\frac{3}{4} \\
& \Rightarrow \quad S_{n} \\
&=\frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^{5}\right)}{1-\frac{3}{4}} \\
&=1-\left(\frac{3}{4}\right)^{5} \\
&=\frac{1-\frac{243}{1,024}}{1,024}
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. finds fraction of area shaded in first three patterns. Some correct substitution $(a$ or $r)$ into S_{n} formula and stops or fails to progress.
High partial credit: (4 marks)	-	Substantive work towards finding shaded area in 5th pattern, e.g. correct area for 4th pattern, but fails to finish or finishes incorrectly.
	-	Fully correct substitution (a and r) into S_{n} formula, but fails to finish or finishes incorrectly.

9(b) (cont'd.)
(v) In which pattern will the shaded area be greater than 95\% of the overall area?

Pattern: $\quad=\quad$ (1) $\frac{1}{4}$, (2) $\frac{1}{4}+\frac{3}{16}$, (3) $\frac{1}{4}+\frac{3}{16}+\frac{9}{64}, \ldots$
Sum of geometric progression

$$
\begin{aligned}
& S_{n} \quad=\quad \frac{a\left(1-r^{n}\right)}{1-r} \quad a=\frac{1}{4}, r=\frac{3}{4} \\
& \Rightarrow S_{n}=\frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^{n}\right)}{1-\frac{3}{4}} \\
& =1-\left(\frac{3}{4}\right)^{n} \\
& =0.95 \\
& \Rightarrow \quad 1-\left(\frac{3}{4}\right)^{n} \quad=\quad 0.95 \\
& \Rightarrow \quad\left(\frac{3}{4}\right)^{n} \quad=\quad 1-0.95 \\
& \begin{array}{rll}
& & = \\
& = & 0 \cdot 05 \\
& \log _{\frac{3}{4}}(0 \cdot 05)
\end{array} \\
& =10 \cdot 413343 . . \\
& \Rightarrow \quad n \quad=\quad 11
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (2 marks) \& - \& Any relevant first step, e.g. writes down that pattern is the sum of a geometric progression and identifies correct a and r. Some correct substitution (a or r) into S_{n} formula and stops or fails to progress.

\hline High partial credit: (4 marks) \& -

- \& Fully correct substitution (a and r) into S_{n} formula and finds $1-\left(\frac{3}{4}\right)^{n}=0 \cdot 95$, but fails to finish or finishes incorrectly. Finds $n=10 \cdot 413343 . .$. , but fails to round up to $n=11$.

\hline
\end{tabular}

Pre-Leaving Certificate Examination, 2018

Mathematics

Higher Level - Paper 2
 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect).
Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on.
These scales and the marks that they generate are summarised in the following table:

Scale label	A	\mathbf{B}	\mathbf{C}	\mathbf{D}
No. of categories	2	3	4	5
5 mark scale		$\mathbf{0 , 2 , 5}$	$\mathbf{0 , 2 , 4 , 5}$	$\mathbf{0 , 2 , 3 , 4 , 5}$
10 mark scale			$\mathbf{0 , 4 , 7 , 1 0}$	$\mathbf{0 , 4 , \mathbf { 6 } , \mathbf { 8 } , \mathbf { 1 0 }}$
15 mark scale				$\mathbf{0 , 5 , 9 , 1 2 , 1 5}$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving (1) incorrect rounding, © omission of units, $\mathbf{3}$ a misreading that does not oversimplify the work or $\mathbf{4}$ an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk.
Thus, for example, scale 10C* indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- \quad The * to be applied once only within each section (a), (b), (c), etc. of all questions.
- The * penalty is not applied for the omission of units in currency solutions.

Unless otherwise specified, accept correct answer with or without work shown.
Accept students' work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Summary of Marks - 2018 LC Maths (Higher Level, Paper 2)

Section A

Q. 1	(a) (b)	(i) (ii) (iii)	$\begin{aligned} & \text { 5C }(0,2,4,5) \\ & \text { 5C }(0,2,4,5) \\ & \text { 5C }(0,2,4,5) \\ & \text { 10D }(0,4,6,8,10) \end{aligned}$
Q. 2	(a)		10D (0, 4, 6, 8, 10)
	(b)		5C* (0, 2, 4, 5)
	(c)		10D* (0, 4, 6, 8, 10)

Q. 3	(a)	$5 \mathrm{C}(0,2,4,5)$	
	(b)	$5 \mathrm{C}(0,2,4,5)$	
	(c)	$15 \mathrm{D}(0,5,9,12,15)$	
			$\mathbf{2 5}$

Section B

Q. $7 \quad$ (a) (i) $10 \mathrm{C}^{*}(0,4,7,10)$
(ii) $5 \mathrm{~B}^{*}(0,2,5)$
(b) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(iii) $5 \mathrm{C}(0,2,4,5)$
(c) (i) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(ii) $5 \mathrm{D}(0,2,3,4,5)$

50
(ii) $5 \mathrm{C}(0,2,4,5)$
(iii) $5 \mathrm{C}(0,2,4,5)$
(b) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(iii) $5 \mathrm{C}(0,2,4,5)$
(iv) $\quad 5 \mathrm{C}(0,2,4,5)$
(v) $5 \mathrm{D}(0,2,3,4,5)$

Q. 4	(a)	10D $(0,4,6,8,10)$	
	(b)	5C* $(0,2,4,5)$	
	(c)	$10 \mathrm{D}(0,4,6,8,10)$	
			25

Q. $5 \quad$ (a) (i) $\quad 5 \mathrm{C}(0,2,4,5)$
Q. $9 \quad$ (a) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(iii) $5 \mathrm{D}(0,2,3,4,5)$
(iv) $\quad 5 \mathrm{C}(0,2,4,5)$
(v) $10 \mathrm{D}^{*}(0,4,6,8,10)$
(b)
$10 D^{*}(0,4,6,8,10)$
(ii) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(b) $\quad 10 \mathrm{D}(0,4,6,8,10)$ 25
Q. $6 \quad$ (a) (i) $\quad 10 \mathrm{D}(0,4,6,8,10)$
(ii) $\quad 5 \mathrm{C}(0,2,4,5)$
(b) $\quad 10 \mathrm{D}^{*}(0,4,6,8,10)$ 25

Current Marking Scheme

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

Copyright

All rights reserved. This marking scheme and corresponding papers(s) are protected by Irish (EU) copyright law. Reproduction and distribution of these materials or any portion thereof without the written permission of the publisher is prohibited except for the immediate use within a classroom.

Pre-Leaving Certificate Examination, 2018

Mathematics
 Higher Level - Paper 2
 Marking Scheme (300 marks)

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all nine questions.
Marks will be lost if all necessary work is not clearly shown.
Answers should include the appropriate units of measurement, where relevant.
Answers should be given in simplest form, where relevant.

Answer all six questions from this section.

Question 1
(25 marks)

1(a) Orla and Liam play a game that consists of tossing an unbiased coin. The first person to get a 'heads' is the winner. If Orla tosses first, find the probability that:
(i) Liam wins the game on his first toss,

$P($ Liam wins on 1st toss)

$$
\begin{aligned}
& =P(\text { Orla loses on } 1 \text { st toss })+P(\text { Liam wins on } 1 \text { st toss }) \\
& =\frac{1}{2} \times \frac{1}{2} \\
& =\quad \frac{1}{4} \text { or } 0.25
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct explanation of probability that Liam wins, e.g. ' P (Orla loses on 1st toss) $+P($ Liam wins on 1 st toss) or $P(\mathrm{~L}, \mathrm{~W}) '$ or similar and stops. Correct probabilities chosen, but incorrect operator used.
High partial credit: (4 marks)		Correct probabilities and operator chosen, i.e. $P($ Liam wins $)=\frac{1}{2} \times \frac{1}{2}$, but fails to express as a single fraction or equivalent.

1(a) (cont'd.)
(ii) Orla wins the game on her second toss,
P (Orla wins on 2nd toss)

$$
\begin{aligned}
& =\quad P(\text { Orla loses on } 1 \text { st toss })+P(\text { Liam loses on } 1 \text { st toss }) \\
& \\
& =\quad \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
& =\quad \frac{1}{8} \underline{\text { or }} 0 \cdot 125
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (2 marks) \& -

- \& Any relevant first step, e.g. writes down correct explanation of probability that Orla wins, e.g. ' P (Orla loses on 1st toss) $+P($ Liam loses on 1st toss) $+P$ (Orla wins on 2nd toss)' or similar and stops. Correct probabilities chosen, but incorrect operator used.

\hline High partial credit: (4 marks) \& \& Correct probabilities and operator chosen, i.e. $P($ Orla wins $)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$, but fails to express as a single fraction or equivalent.

\hline
\end{tabular}

(iii) Orla wins the game.
P (Orla wins)

$$
\begin{aligned}
= & P(\text { Orla wins on 1st toss })+P(\text { Orla wins on 2nd toss }) \\
& +P(\text { Orla wins on 3rd toss })+\ldots \\
= & \frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\ldots \\
= & \frac{1}{2}+\frac{1}{2}\left(\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)+\ldots
\end{aligned}
$$

$\Rightarrow \quad$ Infinite geometric progression

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\frac{a}{1-r} \quad a=\frac{1}{2}, r=\frac{1}{4} \\
\Rightarrow \quad P \text { (Orla wins } \quad & =\frac{\frac{1}{2}}{1-\frac{1}{4}} \\
& =\frac{4}{6} \text { or } \frac{2}{3} 0.666666 \ldots
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down correct explanation of probability that Orla wins, e.g. ' P (Orla wins on 1st toss) $+P$ (Orla wins on 2nd toss) $+P$ (Orla wins on 3rd toss) $+\ldots$...' or similar. Finds P (Orla wins) $=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\ldots$
High partial credit: (4 marks)	-	Recognises that P (Orla wins) is equal to the sum of a G.P. with $a=\frac{1}{2}$ and $r=\frac{1}{4}$, but fails to find or finds incorrect S_{∞}.

1(b) A game of chance comprises a player spinning a 'lottery wheel'. There are 100 positions in which the ball has an equal chance of landing but there is only one chance for a player to win the top prize.
Find the minimum number of spins which Carina must attempt in order that the probability of winning the top prize at least once is no less than 25%.

$$
\begin{align*}
& P(\text { wins top prize })=\frac{1}{100} \tag{10D}\\
& \Rightarrow \quad P(\text { does not win }) \quad=\quad 1-\frac{1}{100} \\
& =\frac{99}{100} \\
& \Rightarrow \quad P \text { (Carina wins top prize at least once in } n \text { attempts) } \\
& =\quad 1-P \text { (never wins top prize in } n \text { attempts) } \\
& =1-\left(\frac{99}{100}\right)^{n} \\
& =0.25 \\
& \Rightarrow \quad 1-\left(\frac{99}{100}\right)^{n} \quad=\quad 0.25 \\
& \Rightarrow \quad\left(\frac{99}{100}\right)^{n} \quad=\quad 1-0 \cdot 25 \\
& \begin{array}{lll}
& = & 0.75 \\
& = & \log _{\frac{99}{100}}(0.75)
\end{array} \\
& =\quad 28.624125 \ldots \\
& \Rightarrow n=29
\end{align*}
$$

Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) - Any relevant first step, e.g. writes down correct explanation of probability, e.g. $' P($ Carina wins at least once $)=1-P($ never wins top prize) or similar and stops.
$-\quad$ Finds $P($ does not win $)=1-\frac{1}{100}$ or $\frac{99}{100}$.
Mid partial credit: (6 marks) $\quad-\quad$ Finds P (Carina wins top prize) and finds $1-\left(\frac{99}{100}\right)^{n}=0.25$ or $1-\left(\frac{99}{100}\right)^{n}>0.25$
and stops or fails to progress.
High partial credit: (8 marks) $\quad-\quad$ Finds P (Carina wins top prize), i.e.
$1-\left(\frac{99}{100}\right)^{n}=0.25$ or $1-\left(\frac{99}{100}\right)^{n}>0.25$
with substantive work towards finding n, but fails to finish or finishes incorrectly.

- Finds $n=28 \cdot 624125 \ldots$, but fails to round up to $n=29$.

The diagram below shows a sector of a circle with centre O and radius 20 cm . A circle with centre C and radius $x \mathrm{~cm}$ lies within the sector and touches it at P, Q and R. S is another point on the circle. $|\angle P O R|=1 \cdot 29$ radians.

2(a) By considering the triangle $P O C$, show that x is equal to 7.5 cm , correct to one decimal place.

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)		Any relevant first step, e.g. writes down or indicates on diagram that $\triangle P O C$ is a right-angled triangle with $\|\angle C P O\|=90^{\circ}$. Finds $\|\angle P O C\|=0.645$ rads. Finds $\|O C\|=20-x$. Some correct substitution into trig ratio (sin) and stops or fails to progress.
	Mid partial credit: (6 marks)		Finds $\sin 0.645=\frac{x}{20-x}$ and stops or fails to progress.
	High partial credit: (8 marks)		Finds $0.601198 \ldots=\frac{x}{20-x}$ with some work towards finding x, but fails to finish or finishes incorrectly.

2(b) Hence, find the area of the region which is inside the sector but outside the circle, correct to three decimal places.

$$
\begin{aligned}
\text { Area of sector } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(20)^{2}(1 \cdot 29) \\
& =258 \mathrm{~cm}^{2} \\
\text { Area of circle } & =\pi r^{2} \\
& =\pi(7 \cdot 5)^{2} \\
& =176 \cdot 714586 \ldots \mathrm{~cm}^{2} \\
\Rightarrow \quad \text { Area outside circle } & =258-176 \cdot 714586 \ldots \\
& =81 \cdot 285413 \ldots \mathrm{~cm}^{2} \\
& \cong 81 \cdot 285 \mathrm{~cm}^{2}
\end{aligned}
$$

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for the area of a sector or a circle with some correct
		substitution into formula.
	-	Finds Area of sector [ans. 258]. Finds Area of circle [ans. 176•714586...].
High partial credit: (4 marks)	-	Finds area $=\frac{1}{2}(20)^{2}(1 \cdot 29)-\pi(7 \cdot 5)^{2}$, but fails to evaluate or evaluates incorrectly.
	-	Finds both areas separately $\left[\frac{1}{2}(20)^{2}(1 \cdot 29)\right.$ and $\left.\pi(7 \cdot 5)^{2}\right]$ with one error/omission, but finishes correctly.

* Deduct 1 mark off correct answer only $\mathbf{(1}$ if final answer is not rounded or incorrectly rounded or $\mathbf{2}$ for the omission of or incorrect use of units (' cm^{2} ') - apply only once to each section (a), (b), (c), etc. of question.

2(c) Find the perimeter of the region PORS bounded by the arc $P S R$ and the lines $O P$ and $O R$.
Give your answer correct to the nearest cm.
Perimeter of the region PORS

$$
=\quad|P O|+|O R|+|\operatorname{arc} R S P|
$$

Consider $\triangle P O C$
Using Pythagoras’ theorem

$$
\begin{aligned}
& \Rightarrow \begin{array}{ll}
|\mathrm{Hyp}|^{2} & = \\
|O \mathrm{Opp}|^{2}+\mid \text { Adj }\left.\right|^{2} \\
|O C|^{2} & =|C P|^{2}+|P O|^{2}
\end{array} \\
& |O C|=20-7.5 \\
& \begin{array}{rll}
|C P| & = & 12 \cdot 5 \\
& = & 7 \cdot 5
\end{array} \\
& \Rightarrow|P O|^{2} \quad=\quad(12 \cdot 5)^{2}-(7 \cdot 5)^{2} \\
& =156 \cdot 25-56 \cdot 25 \\
& =100 \\
& \Rightarrow|P O| \quad=\quad \sqrt{100} \\
& =10 \mathrm{~cm} \\
& \text { Also }|O R|=10 \mathrm{~cm} \\
& |\angle R C P|=2|\angle O C P| \\
& |\angle O C P|=\pi-\frac{\pi}{2}-0.645 \\
& =\frac{\pi}{2}-0.645 \\
& \Rightarrow \quad|\angle R C P|=2\left(\frac{\pi}{2}-0.645\right) \\
& =\quad \pi-1.29 \\
& =1 \cdot 851592 \ldots \text { (rads) } \\
& |\operatorname{arc} R S P|=r \theta \\
& =\quad(7 \cdot 5)(1 \cdot 851592 \ldots) \\
& =13 \cdot 886944 \ldots \mathrm{~cm}
\end{aligned}
$$

Perimeter of the region PORS

$$
\begin{aligned}
& =\quad 10+10+13 \cdot 886944 \ldots \\
& =\quad 33 \cdot 886944 \ldots \\
& \cong \quad 34 \mathrm{~cm}
\end{aligned}
$$

Scale 10D* (0, 4, 6, 8, 10)
$\left.\begin{array}{|lll|}\hline \text { Low partial credit: (4 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. writes down } \\ \text { correct relevant formula for Pythagoras' } \\ \text { theorem or for the length of an arc } \\ \text { (in rads) with some correct substitution } \\ \text { into formula. }\end{array} \\ & - & \begin{array}{l}\text { Indicates Perimeter of the region PORS } \\ =|P O|+|O R|+\mid \text { arc } R S P \mid \text { and stops. } \\ \text { Correct substitution into formula for } \\ \text { Pythagoras' theorem (not stated), but fails }\end{array} \\ \text { to evaluate or evaluates incorrectly. } \\ \text { Writes down that }|\angle R C P|=2|\angle O C P| \\ \text { or equivalent. }\end{array}\right]$

* \quad Deduct 1 mark off correct answer only if final answer is not rounded or incorrectly rounded - apply only once to each section (a), (b), (c), etc. of question.

Two circles, k_{1} and k_{2}, touch externally.
3(a) The equation of the circle k_{1} is $x^{2}+y^{2}-6 x+2 y-15=0$.
Find the centre and radius of k_{1}.
(1) Centre of k_{1} :

General equation of a circle:
$s: x^{2}+y^{2}+2 g x+2 f y+c=0$ with centre $(-g,-f)$
$k_{1}: \quad x^{2}+y^{2}-6 x+2 y-15=0$
$x^{2}+y^{2}+2(-3) x+2(1) y-15=0$
$\Rightarrow \quad$ Centre $(-g,-f) \quad=\quad(3,-1)$
(2) Radius of k_{1} :
$r_{1}\left(\right.$ radius of $\left.k_{1}\right)=\sqrt{g^{2}+f^{2}-c}$
$=\sqrt{(-3)^{2}+(1)^{2}-(-15)}$
$=\sqrt{9+1+15}$
$=\sqrt{25}$
$=5$
Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. effort at relating one or more coefficients of given equation to general equation of a circle.
	-	Effort at completing square(s).

3(b) The centres of the two circles lie on the line $4 x+3 y-9=0$. The radius of circle k_{2} is 10 units. If the co-ordinates of the centre of circle k_{2} are expressed in the form $(-g,-f)$, show that $(3+g)^{2}+(f-1)^{2}=225$.

Let c_{1} be the centre of k_{1} and c_{2} be the centre of k_{2}

$$
\begin{aligned}
& r_{2}\left(\text { radius of } k_{2}\right)=10 \\
& c_{2}\left(\text { centre of } k_{2}\right)=(-g,-f) \\
& r_{1}\left(\text { radius of } k_{1}\right) \quad=\quad 5 \quad \ldots \text { answer from part (a) } \\
& c_{1}\left(\text { centre of } k_{1}\right) \quad=\quad(3,-1) \quad \ldots \text { answer from part (a) } \\
& r_{1}+r_{2}=\left|c_{1} c_{2}\right| \\
& \Rightarrow 5+10 \quad=\sqrt{(3-(-g))^{2}+(-1-(-f))^{2}} \\
& \Rightarrow \quad 15 \quad=\sqrt{(3+g)^{2}+(-1+f)^{2}} \\
& =\sqrt{(3+g)^{2}+(f-1)^{2}} \\
& \Rightarrow \quad(3+g)^{2}+(f-1)^{2}=15^{2} \\
& \text { ** Accept students' answers for } r_{1} \text { and } c_{1} \text { from part (a) if not oversimplified. }
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down that $r_{1}+r_{2}=\left\|c_{1} c_{2}\right\| \underline{\text { or similar. }}$.
	-	Finds correct value of $r_{1}+r_{2}$ [ans. 15].
	-	Some correct substitution into distance formula to find $\left\|c_{1} c_{2}\right\|$ and stops or fails to progress.
High partial credit: (4 marks)	-	Substitutes correctly into $r_{1}+r_{2}=\left\|c_{1} c_{2}\right\|$, but fails to find correct expression.

Question 3 (cont'd.)

3(c) Hence, or otherwise, find the possible equations of k_{2}.

$$
\begin{aligned}
& (-g,-f) \in 4 x+3 y-9=0 \\
& \Rightarrow 4(-g)+3(-f)-9=0 \\
& \Rightarrow 3 f=-4 g-9 \\
& \Rightarrow \quad f \quad=\frac{-4 g-9}{3} \\
& 225=(3+g)^{2}+(f-1)^{2} \\
& \text { Substituting (1) into (2): } \\
& \Rightarrow 225=(3+g)^{2}+\left(\frac{-4 g-9}{3}-1\right)^{2} \\
& =g^{2}+6 g+9+\left(\frac{-4 g-12}{3}\right)^{2} \\
& =\quad g^{2}+6 g+9+\frac{16 g^{2}+96 g+144}{9} \\
& \Rightarrow 225(9) \quad=\quad\left(g^{2}+6 g+9\right)(9)+16 g^{2}+96 g+144 \\
& \Rightarrow \quad 2,025 \quad=\quad 9 g^{2}+54 g+81+16 g^{2}+96 g+144 \\
& \Rightarrow \quad 25 g^{2}+150 g-1,800=0 \\
& \Rightarrow \quad g^{2}+6 g-72 \quad=0 \\
& \Rightarrow \quad(g-6)(g+12) \quad=\quad 0 \\
& \Rightarrow g-6 \quad=\quad 0 \quad g+12 \quad=0 \\
& \Rightarrow g \quad=\quad 6 \quad \Rightarrow \quad g \quad-12 \\
& \Rightarrow f=\frac{-4 g-9}{3} \Rightarrow f=\frac{-4 g-9}{3} \\
& =\frac{-4(6)-9}{3} \quad=\frac{-4(-12)-9}{3} \\
& =\frac{-33}{3}=\frac{39}{3} \\
& =-11=13 \\
& \Rightarrow \quad c_{2}:(-6,11) \\
& \Rightarrow \quad k_{2}:(x+6)^{2}+(y-11)^{2}=100 \quad \Rightarrow \quad k_{2}:(x-12)^{2}+(y+13)^{2}=100
\end{aligned}
$$

Scale 15D (0, 5, 9, 12, 15)

Low partial credit: (5 marks)	-	Any relevant first step, e.g. substitutes $(-g,-f)$ correctly into $4 x+3 y-9=0$.
	-	Finds $f=\frac{-4 g-9}{3}$ or $g=\frac{-3 f-9}{4}$
	$\underline{\text { and stops or fails to progress. }}$	

4(a) Find the equation of the line l through the point $(-3,2)$, which divides the line segment $(-6,2)$ to $(-3,-4)$ internally in the ratio $1: 2$.

Line segment $(-6,2)$ to $(-3,-4)$ divided internally in the ratio 1:2

$$
\begin{aligned}
P(x, y) & =\left(\frac{k_{1} x_{2}+k_{2} x_{1}}{k_{1}+k_{2}}, \frac{k_{1} y_{2}+k_{2} y_{1}}{k_{1}+k_{2}}\right) \\
& =\left(\frac{1(-3)+2(-6)}{1+2}, \frac{1(-4)+2(2)}{1+2}\right) \\
& =\left(\frac{-15}{3}, \frac{0}{3}\right) \\
& =(-5,0)
\end{aligned}
$$

Line l contains $(-3,2)$ and $(-5,0)$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\Rightarrow \quad m_{l}(\text { slope of line } l) & =\frac{0-2}{-5-(-3)} \\
& =\frac{-2}{-2} \\
& =1
\end{aligned}
$$

Equation of $l \quad$ Equation of l
$(-3,2), m_{l}=1 \quad(-5,0), m_{l}=1$

	$y-y_{1}$			$m\left(x-x_{1}\right)$	
$\Rightarrow y-y_{1}$		$=$	$m\left(x-x_{1}\right)$		
$\Rightarrow y-(2)$			$1(x-(-3))$	\Rightarrow	$y-(0)$
$\Rightarrow y-2$			$=$	$1(x-(-5))$	
$\Rightarrow x-3$		\Rightarrow	y	$=$	$x+5$
$\Rightarrow x+5$			0	$x-y+5$	$=$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for ratio with some correct substitution into formula.
	-	Identifies correct relevant formula for slope or equation of a line with some correct substitution of $(-3,2)$ into formula.
Mid partial credit: (6 marks)	-	Substitutes correctly into ratio formula, and stops or fails to progress.
	-	Finds one ordinate only (correct). Correct co-ordinates, but no work shown.
High partial credit: (8 marks)	-	Finds correct slope of line l, but fails to find equation of line l eq finds incorrect
	-	equation of line l. Finds equation of line l with one error/omission, but finishes correctly.

4(b) Find the co-ordinates of the points where l cuts the x-axis and the y-axis and hence, find the area of the triangle formed by l and the two axes.
(1) Co-ordinates of points where l cuts the x-axis and y-axis

	$l: x-y+5$	$=$	0
	x-axis		
\Rightarrow	y	$=$	0
\Rightarrow	$x-0+5$	$=$	0
\Rightarrow	x	-5	
\Rightarrow	cuts the x-axis at $(-5,0)$		
	y-axis		
\Rightarrow	x	$=$	0
\Rightarrow	$0-y+5$	$=$	0
\Rightarrow	$-y$	$=$	-5
\Rightarrow	y	$=$	5
\Rightarrow	cuts the y-axis at $(0,5)$		

(2) Area of triangle formed by l and the two axes

$$
\begin{aligned}
\Rightarrow \quad \text { Area of } \Delta & =\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \\
& =\frac{1}{2}|(-5)(5)-(0)(0)| \\
& =\frac{1}{2}|-25| \\
& =\frac{1}{2}(25) \\
& =12 \cdot 5 \text { units }^{2}
\end{aligned}
$$

Scale 5C* (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for the area of a triangle with some correct substitution.
	-	Finds either correct x or y intercept and stops or fails to progress.
High partial credit: (4 marks)	-	Finds both x and y intercepts correctly, but fails to find or finds incorrect area of triangle.
	$-\quad$Finds area of triangle with one incorrect intercept/error/omission, but finishes correctly.	

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('units') - apply only once to each section (a), (b), (c), etc. of question.

4(c) A second line, $y=m x+c$, where m and c are positive constants, passes through $(-3,2)$ and forms a triangle with the axes of equal area to that in part (b) above. Find the equation of this line.

(1) | y | | $m x+c$ | |
| ---: | :--- | :--- | :--- |
| | $(-3,2)$ | \in | $y=m x+c$ |
| \Rightarrow | $-3 m+c$ | | $=$ |
| $\Rightarrow \quad c$ | | | $3 m+2$ |

(2) Intercepts x-axis @ $y=0$

$$
\begin{aligned}
& \begin{array}{lll}
y & = & m x+c \\
\Rightarrow & = & m x+c
\end{array} \\
& \Rightarrow m x \quad=\quad-c \\
& \Rightarrow \quad x \quad=\frac{-c}{m} \\
& \Rightarrow \quad \text { cuts the } x \text {-axis at }\left(\frac{-c}{m}, 0\right) \\
& \text { Intercepts } y \text {-axis @ } x=0 \\
& \begin{array}{llr}
y & = & m(0)+c \\
\Rightarrow & = & c
\end{array} \\
& \Rightarrow \quad \text { cuts the } y \text {-axis at }(0, c)
\end{aligned}
$$

3
Area of $\Delta \quad=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$
$=\quad \frac{1}{2}\left|\left(\frac{-c}{m}\right)(c)-(0)(0)\right|$
$=\frac{c^{2}}{2 m}$
$=12.5 \quad \ldots$ answer from part (b)
$\Rightarrow \frac{c^{2}}{2 m} \quad=\quad 12 \cdot 5$
$\Rightarrow c^{2} \quad=12 \cdot 5(2 m)$
$=25 \mathrm{~m}$
(4)

Substituting (1) into (2):
$(3 m+2)^{2}=25 m$
$\Rightarrow 9 m^{2}+12 m+4=25 m$
$\Rightarrow 9 m^{2}-13 m+4=0$
$\Rightarrow(9 m-4)(m-1) \quad=0$
$\Rightarrow 9 m-4 \quad=\quad 0 \quad m \quad 0$
$\Rightarrow \quad=\quad \frac{4}{9} \quad \Rightarrow \quad m \quad 1$
c $=3 m+2$
$\Rightarrow \quad$ slope of line l
... (1)

$$
\begin{aligned}
\Rightarrow \quad c & =3\left(\frac{4}{9}\right)+2 \\
& =\frac{10}{3}
\end{aligned}
$$

© Equation of line

$$
\begin{aligned}
y & =m x+c \\
\Rightarrow y & =\frac{4}{9} x+\frac{10}{3} \text { or } 4 x-9 y+30=0
\end{aligned}
$$

4(c) (cont’d.)
** Accept students’ answers for Area of Δ from part (b) if not oversimplified.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. substitutes $(-3,2)$ correctly into $y=m x+c$.
	Finds either correct x or y intercept and stops of fails to progress.	
Mid partial credit: (6 marks)	-	Substitutes correctly into area of triangle formula and finds $\frac{c^{2}}{2 m}=12 \cdot 5$ or $c^{2}=25 m$, but fails to find correct quadratic equation.
High partial credit: (8 marks)	$-\quad$Finds correct slope, i.e. $m=\frac{4}{9}$, but fails to find equation of line or finds incorrect equation of line. Finds equation of line with one error/omission, but finishes correctly.	

5(a) A jury of 12 people is to be selected from a panel of 8 men and 8 women.
(i) In how many ways can the jury be selected?

Possible jurors	$=8+8$
	$=12$
\#total juries	$=\binom{16}{12}$
	$={ }^{16} C_{12}$
	$=\frac{16!}{12!(16-12)!}$
	$=\frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2 \times 1}$
	$=\frac{43,680}{24}$
	$=1,820$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down '\# total juries $=\binom{16}{12} \underline{\text { or }}{ }^{16} C_{12}$ ' and stops or fails to progress. Writes down or evaluates correctly ${ }^{16} P_{12}$ [ans. $16 \times 15 \times 14 \times 13$ or 43,680].
High partial credit: (4 marks)		Finds $\frac{16!}{12!(16-12)!}$ or $\frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2 \times 1}$, but fails to evaluate or evaluates incorrectly

5(a) (cont'd.)
(ii) Find the probability that the jury selected has more women than men.

$$
\begin{aligned}
& \Rightarrow \quad \begin{aligned}
& \text { More women than men } \\
& \text { Jury composition }= \\
&=\left[\binom{8}{8} \times\binom{ 8}{4}\right]+\left[\binom{8}{7} \times\binom{ 8}{5}\right] \\
&=\left[{ }^{8} C_{8} \times{ }^{8} C_{4}\right]+\left[{ }^{8} C_{7} \times{ }^{8} C_{5}\right]
\end{aligned} \\
&=\left[1 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}\right]+\left[8 \times \frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right] \\
&=[1 \times 70]+[8 \times 56] \\
&=70+448 \\
&=518 \\
& \Rightarrow \quad=\frac{1,820}{} \\
& \Rightarrow \quad P(\text { mories } \\
&=\frac{518}{1,820} \\
&=\frac{37}{130} \underline{\text { or }} 0 \cdot 284615 \ldots
\end{aligned}
$$

** Accept students' answers for \# total juries from part (a)(i) if not oversimplified.
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	- -	Any relevant first step, e.g. writes down $\#$ juries $=\binom{8}{8} \times\binom{ 8}{4},{ }^{8} C_{8} \times{ }^{8} C_{4},\binom{8}{7} \times\binom{ 8}{5}$ or ${ }^{8} C_{7} \times{ }^{8} C_{5}$ (evaluated or not). Finds $\left[\binom{8}{8} \times\binom{ 8}{4}\right] \times\left[\binom{8}{7} \times\binom{ 8}{5}\right]$, but fails to evaluate or evaluates incorrectly. Writes downs or evaluates correctly $\left[{ }^{8} P_{8} \times{ }^{8} P_{4}\right] \times\left[{ }^{8} P_{7} \times{ }^{8} P_{5}\right]$.
Mid partial credit: (6 marks)	- - -	Finds $\left[\binom{8}{8} \times\binom{ 8}{4}\right]+\left[\binom{8}{7} \times\binom{ 8}{5}\right]$, but fails to evaluate or evaluates incorrectly. Finds $\left[\binom{8}{8} \times\binom{ 8}{4}\right] \times\left[\binom{8}{7} \times\binom{ 8}{5}\right]$ and evaluates correctly [ans. 31,360].
High partial credit: (8 marks)	-	Finds \# juries = 518, but fails to find or finds incorrect probability.

5(b) A Maths teacher tells her class of 23 students that "There is a greater than 50% chance of two or more of you having the same birthday."
Do you agree with her? Justify your answer by calculation.
(10D)

$$
\begin{aligned}
& \begin{aligned}
& P(2 \text { or more have the same birthday }) \\
&=1-P(\text { none have the same birthday }) \\
&=1-\left[\left(\frac{365}{365}\right)\left(\frac{364}{365}\right)\left(\frac{363}{365}\right)\left(\frac{362}{365}\right) \ldots\left(\frac{344}{365}\right)\left(\frac{343}{365}\right)\right] \\
&=1-\frac{(365)(364)(363)(362) \ldots(344)(343)}{365^{23}} \\
&=1-0 \cdot 492702 \ldots
\end{aligned} \\
& =
\end{aligned} \quad 0 \cdot 507279 \ldots .
$$

Scale 10D (0, 4, 6, 8, 10)

\begin{tabular}{|c|c|c|}
\hline Low partial credit: (4 marks) \& \& \begin{tabular}{l}
Any relevant first step, e.g. writes down ' \(P\) (2 or more have the same birthday) \(=1-P\) (none have the same birthday)' or similar and stops. \\
Finds \(\left(\frac{365}{365}\right)\left(\frac{364}{365}\right)\left(\frac{363}{365}\right) \ldots\left(\frac{343}{365}\right)\), but fails to evaluate or evaluates incorrectly.
\end{tabular} \\
\hline Mid partial credit: (6 marks) \& -

- \& Finds P (2 or more have the same birthday) $=1-\left[\left(\frac{365}{365}\right)\left(\frac{364}{365}\right) \ldots\left(\frac{343}{365}\right)\right]$, but fails to evaluate or evaluates incorrectly. Finds $\left(\frac{365}{365}\right)\left(\frac{364}{365}\right)\left(\frac{363}{365}\right) \ldots\left(\frac{343}{365}\right)$, and evaluates correctly [ans. $0 \cdot 492702 \ldots$...].

\hline High partial credit: (8 marks) \& - \& Finds correct P (2 or more have same birthday) [ans. $0 \cdot 507279 \ldots$...], but no conclusion or incorrect conclusion given.

\hline
\end{tabular}

6(a) The diagram shows a square $A B C D$ and the point M, the midpoint of $[B C]$. [$A M$] and $[B D$] intersect at the point P and divide the square into four regions. x is the perpendicular height of the triangle $B M P$.
(i) Let $|A B|=2 l$.

Find an equation for the sum of the areas of the four regions, in terms of x and l, and hence, show that $x=\frac{2 l}{3}$.

(10D)
©

$$
\begin{aligned}
\text { Area of region (1) } & =\text { Area of } \triangle B M P \\
& =\frac{1}{2}(\text { base } \times \perp \text { height }) \\
& =\frac{1}{2}(l)(x) \\
& =\frac{1}{2} l x \\
\text { Area of region (2) } & =\text { Area of } \triangle B C D-\text { Area of } \triangle B M P \\
& =\frac{1}{2}(2 l)(2 l)-\frac{1}{2} l x \\
& =2 l^{2}-\frac{1}{2} l x \\
\text { Area of region (3) } & =\text { Area of } \triangle A B M-\text { Area of } \triangle B M P \\
& =\frac{1}{2}(2 l)(l)-\frac{1}{2} l x \\
& =l^{2}-\frac{1}{2} l x \\
& =\text { Area of } \Delta A P D \\
\text { Area of region (4) } & =\frac{1}{2}(2 l)(2 l-x) \\
& =2 l^{2}-l x
\end{aligned}
$$

Equation for the sum of the areas of the four regions

$$
\begin{aligned}
& =\quad \text { Area of regions } 1(1)+(2)+(3)+(4) \\
& =\quad \frac{1}{2} l x+2 l^{2}-\frac{1}{2} l x+l^{2}-\frac{1}{2} l x+2 l^{2}-l x \\
& =\quad 5 l^{2}-\frac{3}{2} l x \\
& =\quad(2 l)(2 l) \\
& =\quad 4 l^{2} \\
& =\quad 4 l^{2} \\
& =\quad 5 l^{2}-4 l^{2} \\
& =\quad l^{2}
\end{aligned}
$$

2

$$
\begin{array}{rlll}
& & \text { Total area of square } & =\quad(2 l)(2 l) \\
& & =4 l^{2} \\
\Rightarrow & 5 l^{2}-\frac{3}{2} l x & & 4 l^{2} \\
\Rightarrow \quad & \frac{3}{2} l x & & \\
\Rightarrow & & =5 l^{2}-4 l^{2} \\
\Rightarrow & x & & =\frac{2}{3} l
\end{array}
$$

6(a) (i) (cont'd.)
Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)		Any relevant first step, e.g. finds correct area of one or two regions. Finds Total area of square [ans. $4 l^{2}$].
Mid partial credit: (6 marks)		Finds correct equation for the sum of the areas of all four regions [ans. $5 l^{2}-\frac{3}{2} l x$] and stops or fails to progress.
High partial credit: (8 marks)	-	Equates the sum of the areas to the Total area of square, i.e. $5 l^{2}-\frac{3}{2} l x=4 l^{2}$, but fails to finish or finishes incorrectly.

(ii) Hence, find the ratio of the areas of the four regions.
(1) Area of region (1) $=\frac{1}{2} l x$
$=\frac{1}{2} l\left(\frac{2}{3} l\right) \quad=\quad \frac{1}{3} l^{2}$
Area of region (2) $=2 l^{2}-\frac{1}{2} l x$
$=\quad 2 l^{2}-\frac{1}{2} l\left(\frac{2}{3} l\right) \quad=\quad \frac{5}{3} l^{2}$
Area of region (3) $=l^{2}-\frac{1}{2} l x$
$=l^{2}-\frac{1}{2} l\left(\frac{2}{3} l\right) \quad=\quad \frac{2}{3} l^{2}$
Area of region (4) $=2 l^{2}-l x$
$=\quad 2 l^{2}-l\left(\frac{2}{3} l\right) \quad=\quad \frac{4}{3} l^{2}$
(2) Ratio of areas of region (1) : region (2) : region (3) : region (4)

$$
\begin{aligned}
& =\quad \frac{1}{3} l^{2}: \frac{5}{3} l^{2}: \frac{2}{3} l^{2}: \frac{4}{3} l^{2} \\
& =\quad 1: 5: 2: 4
\end{aligned}
$$

** Accept students’ answers for the area of each region from part (a)(i) if not oversimplified.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. finds correct area of one or two regions in terms of l^{2}.
High partial credit: (4 marks)	-	Finds correct area of all four regions in terms of l^{2}, but fails to find ratio or finds incorrect ratio.

6(b) The diagram shows the support framework for the roof configuration of a new house. The design is based on a larger triangle which is subdivided into five identical triangles that are similar to the larger triangle.
Each of the frameworks, or roof trusses, is constructed using timber. The quantity surveyor for the project needs to determine the total length of timber required for each truss.

Given that the shortest side of each of the smaller triangles in the design is 2.5 m , find the total length of timber required to make each truss.
Give your answer in the form $a+b \sqrt{c}$, where a, b and $c \in \mathbb{N}$.

Consider $\triangle B C D$
Using Pythagoras' theorem

$$
\begin{array}{rll}
& & |\mathrm{Hyp}|^{2} \\
\Rightarrow \quad|B C|^{2} & & \mid \text { Opp }\left.\right|^{2}+\mid \text { Adj }\left.\right|^{2} \\
\Rightarrow \quad|B C|^{2} & & |D C|^{2}+|D B|^{2} \\
& & =(2 \cdot 5)^{2}+(5)^{2} \\
& =3 \cdot 25+25 \\
& =\frac{125}{4} \\
\Rightarrow \quad|B C| & & =\sqrt{\frac{125}{4}}
\end{array}
$$

Total length of timber required

$$
\begin{aligned}
& =\quad 4(5)+2(2 \cdot 5)+4\left(\frac{5 \sqrt{5}}{2}\right) \\
& =\quad 20+5+10 \sqrt{5} \\
& =\quad 25+10 \sqrt{5} \mathrm{~m}
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10*)
$\left.\begin{array}{|lll|}\hline \text { Low partial credit: (4 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. writes down } \\ \text { formula for Pythagoras’ theorem with } \\ \text { some correct substitution into formula. } \\ \text { Finds correct value of }|D B| \text { [ans. 5]. }\end{array} \\ \hline \text { Mid partial credit: (6 marks) } & - & \text { Finds correct value of }|B C| \text { [ans. } \frac{5 \sqrt{5}}{2} \underline{\text { or }} \\ & & \text { equivalent] and stops or fails to progress. }\end{array}\right\}$

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('units') - apply only once to each section (a), (b), (c), etc. of question.

Answer all three questions from this section.

Mean sea level is the midpoint between high tide and low tide and it is used as a datum from which all altitudes are measured. On a particular day, mean sea level in a boating marina first occurs at midnight (i.e. $t=0$). The expected depth of water in the marina, in metres, can be modelled using the trigonometric function:

$$
h(t)=1.46 \sin \left(\frac{\pi}{6} t\right)+1 \cdot 56
$$

where t is the time in hours from midnight and $\left(\frac{\pi}{6} t\right)$ is expressed in radians.
7(a) (i) Find the time at which the first high tide occurs and the depth of the water in the marina at that time.
(1) Time

$$
\begin{aligned}
& h(t) \\
\Rightarrow \quad & =1 \cdot 46 \sin \left(\frac{\pi}{6} t\right)+1 \cdot 56 \\
\Rightarrow \quad & \frac{\pi}{6} t \\
\Rightarrow \quad \frac{\pi}{6} t & =\frac{\pi}{2} \\
\Rightarrow \quad t & =\frac{6}{2} \\
\Rightarrow \quad & =3 \text { high tide occurs when } \sin \left(\frac{\pi}{6} t\right)=1 \\
\Rightarrow & \text { Time } \quad
\end{aligned}
$$

(2) Depth of water
$h(t) \quad=\quad 1 \cdot 46 \sin \left(\frac{\pi}{6} t\right)+1 \cdot 56$
@ 03:00
$\sin \left(\frac{\pi}{6} t\right) \quad=1$
$\Rightarrow \quad h_{\text {high tide }} \quad=\quad 1.46(1)+1.56$
$=\quad 1.46+1.56$
$\Rightarrow \quad h_{\text {high tide }} \quad=\quad 3.02 \mathrm{~m}$
Scale 10C* (0, 4, 7, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down that maximum /high tide occurs when
		$\sin A \underline{\text { or } \sin \left(\frac{\pi}{6} t\right)=1 .}$
	-	Attempts to differentiate $h(t)$.
	-	Finds $\sin \frac{\pi}{6} t=1 \underline{\text { or } \frac{\pi}{6} t=\sin ^{-1}(1), \text { but }}$
	fails to find t or finds incorrect t, e.g. error using radians.	
High partial credit: (7 marks)	$-\quad$Finds one correct answer only (Time $=03: 00$ or $\left.h_{\text {high tide }}=3.02 \mathrm{~m}\right)$.	

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m') - apply only once in each section (a), (b), (c), etc. of question.

Question 7 (cont'd.)

7(a) (cont'd.)
(ii) Find, by calculation, the period of $h(t)$.

General equation of a sine function:

$$
\begin{aligned}
f(t) & =a+b \sin c t \\
\text { Period } & =\frac{2 \pi}{c} \\
h(t) & =1 \cdot 46 \sin \left(\frac{\pi}{6} t\right)+1 \cdot 56 \\
\Rightarrow \quad c & =\frac{\pi}{6} \\
\Rightarrow \quad \text { Period } & =\frac{2 \pi}{\frac{\pi}{6}} \\
& =2 \pi\left(\frac{6}{\pi}\right) \\
& =12 \text { hours }
\end{aligned}
$$

Scale 5B* (0, 2, 5)
Partial credit: (2 marks) \quad - Any relevant first step, e.g. writes down correct formula for the period of a trig function or general equation of a sine function with notation.

- \quad Some correct use of 2π or $\frac{\pi}{6}$, e.g. $2 \pi \div x$
or $x \div \frac{\pi}{6}, x \neq 2 \pi$ or $\frac{\pi}{6}$.
* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('hours') - apply only once in each section (a), (b), (c), etc. of question.

7(b) (i) Use the depth function, $h(t)$, to show the expected depth of water in the marina between midnight and the following midnight.

$h(t)=1 \cdot 46 \sin \left(\frac{\pi}{6} t\right)+1 \cdot 56$										
Time	$0: 00$	$3: 00$	$6: 00$	$9: 00$	$12: 00$	$15: 00$	$18: 00$	$21: 00$	$00: 00$	
\boldsymbol{t} (hours)	0	3	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 1}$	$\mathbf{2 4}$	
$\boldsymbol{h}(\boldsymbol{t})(\mathbf{m})$	$\underline{\mathbf{1 . 5 6}}$	$\underline{\mathbf{3 . 0 2}}$	$\underline{\mathbf{1 . 5 6}}$	$\underline{\mathbf{0 . 1 0}}$	$\underline{\mathbf{1 . 5 6}}$	$\underline{\mathbf{3 . 0 2}}$	$\underline{\mathbf{1 . 5 6}}$	$\underline{\mathbf{0 . 1 0}}$	$\underline{\mathbf{1 . 5 6}}$	

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Finds one or two correct depths. [Accept incorrect answer from part (a)(i)].
Mid partial credit: (6 marks)	-	Finds three, four or five correct depths.
High partial credit: (8 marks)	-	Finds six, seven or eight correct depths.

Question 7 (cont'd.)

7(b) (cont’d.)
(ii) Sketch the graph of $h(t)$ between midnight and the following midnight.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Plots one or two correct points. [Accept incorrect answer from part (a)(i)].
High partial credit: (4 marks)	-	Plots at least seven correct points.
	-	Plots all points, but graph not sketched or sketched incorrectly.

(iii) A large cruiser wishes to enter the marina to refuel. The boat requires a minimum water level of 1.35 m . When it is fully fuelled, the boat requires at least 1.65 m .
Use your graph to estimate the time interval for which the cruiser can enter the marina in order that it is not grounded on the sea-bed if refuelling takes 4.5 hours.

	From graph:	
Latest departure time	$=$	$17: 53(\pm 0: 30)$
	Earliest entry time	$=$
$11: 44(\pm 0: 30)$		
$\Rightarrow \quad$ Time interval	$=$	$[11: 44,17: 53-4: 30]$
	$=$	$[11: 44(\pm 0: 30), 13: 23(\pm 0: 30)]$

Question 7 (cont'd.)

7(b) (iii) (cont'd.)

Scale 5C (0, 2, 4, 5)
** Accept answers based on students' graph in part (b)(ii) if not oversimplified.

Low partial credit: (2 marks)	-	Any relevant first step, e.g. indicates clearly depths of $1 \cdot 35 \mathrm{~m} \underline{\text { and/or } 1 \cdot 65 \mathrm{~m} \text { on }}$ the graph with corresponding intercepts and times, but no values given.
	-	Identifies correct latest departure time or earliest entry time, i.e. 11:44 or 17:53.
High partial credit: (4 marks)	$-\quad$Identifies correct latest departure time and earliest entry time from graph, but fails to find or finds incorrect time interval.	
	$-\quad$Finds correct answer for time interval, but no work shown on graph.	
	$-\quad$Final answer outside of tolerance, but work shown on student's graph.	

7(c) (i) Find the rate at which the depth of the water in the marina is changing at 8:00 a.m., correct to two decimal places. Explain your answer in the context of the question.
(1) Rate at which the depth of the water is changing

$$
\begin{aligned}
h(t) & =1.46 \sin \left(\frac{\pi}{6} t\right)+1.56 \\
h^{\prime}(t) & =\frac{d}{d t}\left(1.46 \sin \left(\frac{\pi}{6} t\right)+1.56\right) \\
& =(1.46)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right)
\end{aligned}
$$

@ $t=8$

$$
\Rightarrow \quad h^{\prime}(8) \quad=\quad(1 \cdot 46)\left(\frac{\pi}{6}\right) \cos \frac{8 \pi}{6}
$$

$$
=\quad \frac{73 \pi}{300} \cos \frac{4 \pi}{3}
$$

$$
=\quad \frac{73 \pi}{300}\left(-\frac{1}{2}\right)
$$

$$
=\quad-\frac{73 \pi}{600}
$$

$$
=\quad-0 \cdot 382227 \ldots
$$

$$
\cong \quad-0.38 \mathrm{~m} / \mathrm{hr}
$$

(2) Explanation

Answer - the tide is going out and the water level is dropping by 0.38 m per hour

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. some correct effort at differentiation.
Mid partial credit: (6 marks)	-	Finds $h^{\prime}(t)=(1 \cdot 46)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right)$, but
		fails to evaluate or evaluates incorrectly.

* Deduct 1 mark off correct answer only $\mathbf{0}$ if final answer is not rounded or incorrectly rounded or $\boldsymbol{2}$ for the omission of or incorrect use of units (' m / hr ') - apply only once to each section (a), (b), (c), etc. of question.

Question 7 (cont'd.)

7(c) (cont’d.)
(ii) Hence, find the other times at which the depth of the water is changing at the same rate.

$$
\begin{aligned}
& h^{\prime}(t) \quad=\quad(1 \cdot 46)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right) \quad \ldots \text { answer from part (c)(i) } \\
& =-\frac{73 \pi}{600} \\
& \Rightarrow \quad(1 \cdot 46)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right)=-\frac{73 \pi}{600} \\
& \Rightarrow \cos \left(\frac{\pi}{6} t\right) \quad=\quad-\frac{1}{2} \\
& \text { Reference angle, } \alpha=\cos ^{-1} \frac{1}{2} \\
& =\quad \frac{\pi}{3} \\
& \text { (1) } \Rightarrow \frac{\pi}{6} t \quad=\pi-\frac{\pi}{3} \\
& =\frac{2 \pi}{3} \\
& \Rightarrow \quad t \quad=\quad 4 \text { or } 4: 00 \text { or } 04: 00 \text { or } 4: 00 \mathrm{am} \\
& \text { (2) } \Rightarrow \frac{\pi}{6} t \quad=\pi+\frac{\pi}{3} \\
& \text {... 3rd quadrant } \\
& =\frac{4 \pi}{3} \\
& \Rightarrow \quad t \quad=\quad 8 \text { or } 8: 00 \text { or } 08: 00 \text { or } 8: 00 \mathrm{am} \\
& \text { (3) } \Rightarrow \frac{\pi}{6} t \quad=\frac{2 \pi}{3}+2 \pi \\
& =\frac{8 \pi}{3} \\
& \Rightarrow \quad t \quad=16 \text { or } 16: 00 \text { or } 4: 00 \mathrm{pm} \\
& \text { (4) } \Rightarrow \frac{\pi}{6} t \quad=\frac{4 \pi}{3}+2 \pi \\
& =\frac{10 \pi}{3} \\
& \Rightarrow \quad t \quad=\quad 20 \text { of } 20: 00 \text { or } 8: 00 \mathrm{pm} \\
& \Rightarrow \text { Other times } \quad=\quad 04: 00,16: 00,20: 00 \text { (or equivalent) }
\end{aligned}
$$

** Accept students' answers for $h^{\prime}(t)$ from part (c)(i) if not oversimplified.
Scale 5D (0, 2, 3, 4, 5)
\(\left.$$
\begin{array}{|lll|}\hline \text { Low partial credit: (2 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. writes down } \\
20: 00 \text { as answer (taken from graph). }\end{array}
$$

\& - \& Finds(1 \cdot 46)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right)=-\frac{73 \pi}{600}\end{array}\right\}\)| | |
| :--- | :--- |
| | and stops or fails to progress. |

8(a) A recent flood damaged a warehouse that contained 3000 computers. An insurance assessor, trying to estimate the damage, takes a random sample of 140 computers and finds that 34 of them are damaged.
(i) Create a 95\% confidence interval for the proportion of computers that are damaged.
(10D)
Confidence interval for a population proportion, p, is

$$
\begin{aligned}
& =\left[\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \\
\Rightarrow \quad \begin{array}{l}
x \\
n \\
\hat{p}
\end{array} & =34 \\
& =140 \\
& =\frac{34}{140} \\
& =\frac{17}{70} \text { or } 0 \cdot 242857 \ldots
\end{aligned}
$$

At 95\% confidence interval

$$
z \text {-value } \quad=\quad 1.96
$$

$\Rightarrow \quad 95 \%$ confidence interval for this population proportion (p)

$$
\begin{aligned}
& =\quad\left[\frac{17}{70}-1 \cdot 96 \sqrt{\frac{\frac{17}{70}\left(1-\frac{17}{70}\right)}{140}}, \frac{17}{70}+1 \cdot 96 \sqrt{\frac{\frac{17}{70}\left(1-\frac{17}{70}\right)}{140}}\right] \\
& =\quad\left[\frac{17}{70}-1 \cdot 96 \sqrt{\frac{\frac{17}{70}\left(\frac{53}{70}\right)}{140}}, \frac{17}{70}+1 \cdot 96 \sqrt{\frac{\frac{17}{70}\left(\frac{53}{70}\right)}{140}}\right] \\
& =\quad[0 \cdot 2428 \ldots-0 \cdot 0710 \ldots, 0 \cdot 2428 \ldots+0 \cdot 0710 \ldots] \\
& =\quad[0 \cdot 1718 \ldots, 0 \cdot 3138 \ldots] \\
& \cong \quad[0 \cdot 1718,0 \cdot 3138]
\end{aligned}
$$

i.e. can be 95% confident that the proportion of computers damaged lies in the range $17 \cdot 18 \%<p<31 \cdot 38 \%$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correct formula for confidence interval, i.e.
		$\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ or $\hat{p} \pm 1 \cdot 96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$,
	-	and stops. Finds correct value for observed population proportion (\hat{p}) and stops or fails to progress.
	-	Mention of 5% level of significance and therefore comparing to z-value of $\pm 1 \cdot 96$.
Mid partial credit: (6 marks)	-	Finds correct value for \hat{p} and some correct substitution into 95\% confidence interval for population proportion.
High partial credit: (8 marks)	-	Correct substitution into 95\% confidence interval, but fails to finish or finishes incorrectly.

8(a) (cont'd.)
(ii) Find the 95% confidence interval for the number of computers that are damaged.
95% confidence interval for this population proportion, p, is

$$
=\quad[17 \cdot 18, \cdot 31 \cdot 38] \quad \ldots \text { answer from part }(\mathrm{a})(\mathrm{i})
$$

$\Rightarrow \quad 95 \%$ confidence interval for the number of computers damaged (x)

$$
\begin{aligned}
& =\left[3,000\left(\frac{17 \cdot 18}{100}\right), 3,000\left(\frac{31 \cdot 38}{100}\right)\right] \\
& =[515 \cdot 4,941 \cdot 4] \\
& \cong[516,942]
\end{aligned}
$$

i.e. can be 95% confident that the number of computers damaged lies in the range $516<x<942$
** Accept students' answers for confidence interval from part (a)(i) if not oversimplified.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. formulates correct confidence interval with some correct substitution.
High partial credit: (4 marks)	-	Finds one endpoint of interval only [ans. 516 or 942].

(iii) The assessor wishes to halve the margin of error in part (i) above.

Assuming that the proportion of computers that are damaged remains unchanged, how many computers should he include in the random sample?

$$
\begin{aligned}
& N \quad=\quad \text { number in new sample } \\
& n \quad=\quad \text { number in old sample (140) } \\
& \text { Margin of error in new sample } \\
& =\quad z \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} \\
& \hat{p} \text { remains unchanged } \\
& \Rightarrow \quad z \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} \quad=\quad \frac{1}{2}\left(z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) \\
& \Rightarrow \quad \frac{1}{\sqrt{N}} \quad=\frac{1}{2}\left(\frac{1}{\sqrt{n}}\right) \\
& \Rightarrow \quad \frac{1}{\sqrt{N}} \quad=\frac{1}{2}\left(\frac{1}{\sqrt{140}}\right) \\
& \Rightarrow \frac{1}{N} \quad=\frac{1}{4}\left(\frac{1}{140}\right) \\
& \Rightarrow \quad N \quad=\quad 4(140) \\
& =560
\end{aligned}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any relevant first step, e.g. writes down correct formula for margin of error, i.e. $z \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$ or $1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$ and stops.
High partial credit: (4 marks)		Finds $\frac{1}{\sqrt{N}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}\right)$ with correct substitution into equation, but fails to finish or finishes incorrectly.

8(b) Lactate dehydrogenase (LDH) is an enzyme found in nearly all living cells. Measuring LDH levels can be helpful in monitoring the effectiveness of certain medical treatments. For a particular group of patients in a research study, the distribution of LDH levels was normal with a mean of 210 and a standard deviation of 15 .
(i) Find the proportion of patients in the study with LDH levels of between 200 and 240.
(10D)

$$
\begin{aligned}
& Z \quad=\frac{x-\mu}{\sigma} \\
& \begin{array}{lll}
\mu & = & 210 \\
\sigma & = & 15
\end{array} \\
& \Rightarrow \quad Z_{200} \quad=\frac{200-210}{15} \\
& =\quad-0 \cdot 666666 \ldots \\
& \cong \quad-0.67 \\
& \Rightarrow \quad Z_{240} \quad=\quad \frac{240-210}{15} \\
& =2 \\
& \Rightarrow \quad P(200 \leq x \leq 240) \\
& =\quad P(-0.67<z<2) \\
& =\quad P(\mathrm{z}<2)-P(z<-0 \cdot 67) \\
& =\quad P(z<2)-(1-P(z<0 \cdot 67)) \\
& =0.9772-(1-0.7486) \quad . . \text { from z-tables } \\
& =0.9772-0.2514 \\
& =0.7258
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for z-value with some correct substitution.
	-	Finds correct value for either z_{200} or z_{240} and stops or fails to progress.
Mid partial credit: (6 marks)	-	Finds one z-value and related z-score, i.e. $P(z<2)=0 \cdot 9772$ or $P(z<0 \cdot 67)=0 \cdot 7486, ~$
	-	and stops or fails to progress. Finds correct $P(-0 \cdot 67<z<2)$ and stops or fails to progress (no z-scores found).
High partial credit: (8 marks)	-	Finds both z-values and z-scores, but fails to manipulate $P(z<-0 \cdot 67) ~ c o r r e c t l y . ~$
	$-\quad$Finds correct $P(z<2)-(1-P(z<0 \cdot 67))$, but fails to finish or finishes incorrectly, e.g. fails to find or finds incorrect z-values..	

(ii) Reduced levels of LDH usually indicate that the medical treatments are working. Find the lower quartile of LDH levels for patients in this research group.

$$
\begin{aligned}
& \Rightarrow \quad P(z \leq k) \quad=\quad 0.25 \\
& \Rightarrow \quad=\quad-0.675 \quad \text {... from } z \text {-tables } \\
& z \quad=\frac{x-\mu}{\sigma} \\
& \mu \quad=\quad 210 \\
& \sigma \quad=15 \\
& \Rightarrow-0.675 \quad=\frac{x-210}{15} \\
& \Rightarrow \quad x-210 \quad=\quad-0.675(15) \\
& \Rightarrow \quad=\quad 210-10 \cdot 125 \\
& =\quad 199.875
\end{aligned}
$$

Question 8

 (cont'd.)8(b) (ii) (cont'd.)

Scale 5C (0, 2, 4, 5)
** Accept students' answers based on z-values of -0.67 [ans. 199•95] or $-0 \cdot 68$ [ans. 199.8]

Low partial credit: (2 marks)	-	Any relevant first step, e.g. sketches graph of normal distribution with lower quartile or 25% indicated.
	-	Finds $z=\frac{x-210}{15}$ and stops or fails
		to progress (no z-score found).

(iii) One month later, 100 of these patients were randomly selected and underwent further testing. It was found that their LDH levels were normally distributed with a mean of 208 and the same standard deviation.
Using the sample mean, find a 95\% confidence interval for the mean LDH level in this group of patients.

95\% confidence interval for the mean LDH level in the group of patients retested (μ)

$$
\begin{aligned}
&=\left[\bar{x}-1 \cdot 96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1 \cdot 96 \frac{\sigma}{\sqrt{n}}\right] \\
& \bar{x}=208 \\
& \sigma= \\
& n=15 \\
& \Rightarrow \quad 95 \% \text { confidence interval } \\
&=\left[208-1 \cdot 96\left(\frac{15}{\sqrt{100}}\right), 208+1 \cdot 96\left(\frac{15}{\sqrt{100}}\right)\right] \\
&=[208-1 \cdot 96(1 \cdot 5), 208+1 \cdot 96(1 \cdot 5)] \\
&=[208-2 \cdot 94,208+2 \cdot 94] \\
&=[205 \cdot 06,210 \cdot 94]
\end{aligned}
$$

i.e. 95% confidence that the mean LDH level in this group of patients lies in the range $205 \cdot 06<\mu<210 \cdot 94$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct formula for confidence interval,
		i.e. $\bar{x} \pm z \frac{\sigma}{\sqrt{n}} \underline{\text { or } \bar{x} \pm 1 \cdot 96 \frac{\sigma}{\sqrt{n}}, \text { and stops. }}$
	-	Some correct substitution $(\bar{x}, \sigma$ or $n)$ into 95% confidence interval (not stated) and stops or fails to progress.
High partial credit: (4 marks)	-	Correct substitution into 95\% confidence interval, but fails to finish or finishes incorrectly.

8(b) (cont'd.)
(iv) Test the hypothesis, at the 5% level of significance, that the mean LDH level has not changed in this period of time.
State clearly the null hypothesis and the alternative hypothesis.
Give your conclusion in the context of the question.
(1) $H_{0}: \mu=210 \quad$ mean has not changed in the last month
$H_{1}: \mu \neq 210 \quad-\quad$ mean has changed in the last month
(2) 95% confidence interval for the mean LDH level in the group of patients retested (μ)

$$
=\quad[205 \cdot 06,210 \cdot 94] \quad . . . \text { answer from part }(\mathrm{b})(\mathrm{iii})
$$

3 Conclusion
as 210 is inside the interval for the mean LDH level for the population group within the research study, $205 \cdot 06<\mu<210 \cdot 94$, we fail to reject the null hypothesis $\left(H_{0}\right)$, i.e. conclude that the mean LDH level has not changed in that time period
** Accept students’ answers for confidence interval from part (b)(iii) if not oversimplified.

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct null hypothesis and/or alternative hypothesis only.
High partial credit: (4 marks)	-	States both hypotheses correctly and compares population mean (μ)) to the confidence interval from part (iii) but: \quadfails to accept or reject hypothesis, to contextualise answer properly.

8(b) (cont'd.)
(v) Find the p-value of the test you performed in part (iv) above and explain what this value represents in the context of the question.
(1) p-value

> z
> $=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$
> $\Rightarrow \quad z$
> $=\frac{208-210}{\frac{15}{\sqrt{100}}}$
> $=\frac{-2}{1.5}$
> $=-1 \cdot 333333 .$.
> $\cong \quad-1 \cdot 33$
> $\Rightarrow \quad P(z<-1 \cdot 33) \quad=\quad 1-P(z<1 \cdot 33)$
> $=1-0.9082 \quad$... from z-tables
> $=0.0918$
> $\Rightarrow \quad p$-value $\quad=\quad 2 \times 0.0918$
> $=0.1836$
> $>\quad 0.05$
(2) Explanation

Any 1:

- the p-value is the probability that the test statistic or a more extreme value could occur if the null hypothesis is true //
- \quad if the mean LDH level of the population group is 210, then the probability that the mean LDH level of the sample retested would be 208 by chance is $18 \cdot 36 \%$ - it is because this has more than a 5% chance that we do not reject the null hypothesis

Scale 5D (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct relevant formula for z-value and stops.
	-	Some correct substitution $(\bar{x}, \mu, \sigma$ or $n)$ into formula for z-value (not stated) and stops or fails to progress.
Mid partial credit: (3 marks)	-	Finds $P(z<1 \cdot 33)=0 \cdot 9082$, but fails to manipulate $P(z<-1 \cdot 33)$ correctly.
	$-\quad$Finds $P(z<-1 \cdot 33)=1-P(z<1 \cdot 33)$, but fails to find or finds incorrect z-value.	
High partial credit: (4 marks)	$-\quad$Finds correct p-value, but fails to contextualise answer properly.	

Three points, A, B and C, are on a horizontal roadway such that $|A B|=35 \mathrm{~m}$ and $|B C|=70 \mathrm{~m}$. A vertical mobile phone mast [$D T$] has its base, D, at the same level as the roadway. The angles of elevation from A, B and C to the top of the tower, T, are such that $\tan |\angle T A D|=\frac{3}{20}, \tan |\angle T B D|=\frac{1}{5}$ and $\tan |\angle T C D|=\frac{3}{13}$.

9(a) (i) Let h be the height of the mobile phone mast, $|D T|$.
Express $|D A|,|D B|$ and $|D C|$, in terms of h.
(1) Consider $\triangle A D T$

$$
\begin{aligned}
\tan |\angle T A D| & =\frac{|D T|}{|D A|} \\
& =\frac{3}{20} \text { (given) } \\
\Rightarrow \frac{h}{|D T|} & =h \\
\Rightarrow \quad|D A| & =\frac{3}{20} \\
\Rightarrow & =\frac{20 h}{3}
\end{aligned}
$$

(2) Consider $\triangle B D T$

$$
\begin{aligned}
\tan |\angle T B D| & =\frac{|D T|}{|D B|} \\
& =\frac{1}{5} \text { (given) } \\
\Rightarrow \quad \frac{h}{|D B|} & =\frac{1}{5} \\
\Rightarrow \quad|D B| & \\
\Rightarrow &
\end{aligned}
$$

3 Consider $\triangle C D T$

$$
\begin{aligned}
\tan |\angle T C D| & =\frac{|D T|}{|D C|} \\
& =\frac{3}{13} \text { (given) } \\
\Rightarrow \frac{h}{|D C|} & =\frac{3}{13} \\
\Rightarrow \quad|D C| & \\
\Rightarrow & \frac{13 h}{3}
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) - Any relevant first step, e.g. draws or indicates on diagram $\triangle A D T, \triangle B D T$ or $\triangle C D T$ with correct lengths of sides shown [i.e. opposite (h) and relevant angle].

- Some correct substitution into correct trig ratio (tan), e.g. $\tan |\angle T A D|=\frac{h}{|D A|}$, and stops or fails to progress.

Mid partial credit: $(6$ marks)	-	Finds one distance correct in terms of h.
High partial credit: (8 marks)	-	Finds two distances correct in terms of h.

9(a) (cont'd.)
(ii) Use the cosine rule to find $\cos |\angle A B D|$ in the form $\frac{a-h^{2}}{b h}$, where $a, b \in \mathbb{N}$.

$$
\begin{aligned}
& \text { Using cosine rule } \\
& \text { Consider } \triangle A B D \\
& \begin{array}{ll}
a^{2} & = \\
b^{2}+c^{2}-2 b c \cos A \\
|D A|^{2} & =\quad|A B|^{2}+|D B|^{2}-2|A B| \cdot|D B| \cos |\angle A B D|
\end{array} \\
& |D A| \quad \frac{20 h}{3} \quad \ldots \text { answer from part (a)(i) } \\
& |A B|=35 \text { (given) } \\
& |D B| \quad=\quad 5 h \quad \ldots \text { answer from part (a)(i) } \\
& \Rightarrow \quad\left(\frac{20 h}{3}\right)^{2} \quad=\quad(35)^{2}+(5 h)^{2}-2(35)(5 h) \cos |\angle A B D| \\
& \Rightarrow \quad \frac{400 h^{2}}{9} \quad=\quad 1,225+25 h^{2}-350 h \cos |\angle A B D| \\
& \Rightarrow 350 h \cos |\angle A B D|=1,225+25 h^{2}-\frac{400 h^{2}}{9} \\
& =1,225-\frac{175 h^{2}}{9} \\
& \Rightarrow \quad 3,150 h \cos |\angle A B D|=11,025-175 h^{2} \\
& \Rightarrow \quad \cos |\angle A B D|=\frac{11,025-175 h^{2}}{3,150 h} \\
& =\frac{63-h^{2}}{18 h} \\
& \text { ** Accept students' answers for }|D A| \text { and }|D B| \text { from part (a)(i) } \\
& \text { if not oversimplified. }
\end{aligned}
$$

Scale 10D (0, 4, 6, 8, 10)
$\left.\left.\begin{array}{|lll|}\hline \text { Low partial credit: (4 marks) } & - & \begin{array}{l}\text { Any relevant first step, e.g. draws or } \\ \text { indicates on diagram } \triangle A B D \text { with correct }\end{array} \\ \text { lengths of sides shown [i.e. sides } a, b, c \\ \text { and relevant angle]. }\end{array}\right] \begin{array}{l}\text { Some correct substitution into cosine rule } \\ \text { and stops or fails to progress. }\end{array}\right]$

9(a) (cont'd.)
(iii) Similarly, show that $\cos |\angle D B C|=\frac{1,575+2 h^{2}}{225 h}$.

$$
\begin{aligned}
& \text { Using cosine rule } \\
& \text { Consider } \triangle D B C \\
& \begin{array}{lll}
a^{2} & = & b^{2}+c^{2}-2 b c \cos A \\
\Rightarrow \quad|D C|^{2} & = & |B C|^{2}+|D B|^{2}-2|B C| .|D B| \cos |\angle D B C|
\end{array} \\
& |D C|=\frac{13 h}{3} \quad \ldots \text { answer from part (a)(i) } \\
& |B C|=70 \text { (given) } \\
& |D B| \quad=\quad 5 h \quad \ldots \text { answer from part (a)(i) } \\
& \Rightarrow \quad\left(\frac{13 h}{3}\right)^{2} \quad=\quad(70)^{2}+(5 h)^{2}-2(70)(5 h) \cos |\angle D B C| \\
& \Rightarrow \quad \frac{169 h^{2}}{9} \quad=\quad 4,900+25 h^{2}-700 h \cos |\angle D B C| \\
& \Rightarrow 700 h \cos |\angle D B C|=4,900+25 h^{2}-\frac{169 h^{2}}{9} \\
& =4,900+\frac{56 h^{2}}{9} \\
& \Rightarrow 6,300 h \cos |\angle D B C|=44,100+56 h^{2} \\
& \Rightarrow \quad \cos |\angle D B C|=\frac{44,100+56 h^{2}}{6,300 h} \\
& =\frac{1,575+2 h^{2}}{225 h}
\end{aligned}
$$

** Accept students' answers for $|D C|$ and $|D B|$ from part (a)(i) if not oversimplified.
Scale 5D (0, 2, 3, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. draws or indicates on diagram $\triangle D B C$ with correct lengths of sides shown [i.e. sides a, b, c and relevant angle].			
	-	Some correct substitution into cosine rule and stops or fails to progress.			
Mid partial credit: (3 marks)	-	Fully correct substitution into cosine rule and stops or fails to progress.			
High partial credit: (4 marks)	-	Fully correct substitution into cosine rule with substantive work towards isolating cos $\|\angle D B C\|, ~ b u t ~ f a i l s ~ t o ~ f i n i s h ~ o r ~ f i n i s h e s ~$			
incorrectly.			$	$	Isolates cos $\|\angle D B C\|$ correctly, but fails
:---					
to give final answer in required form.					

Question 9 (cont'd.)

9(a) (cont'd.)
(iv) Show that $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$.

$$
\begin{array}{rlll}
& \cos (A-B) & & \cos A \cos B+\sin A \sin B \\
\Rightarrow \quad \cos \left(180^{\circ}-\theta\right) & = & \cos 180^{\circ} \cos \theta+\sin 180^{\circ} \sin \theta \\
\cos 180^{\circ} & = & -1 \\
\sin 180^{\circ} & = & 0 \\
\Rightarrow \quad \cos \left(180^{\circ}-\theta\right) & = & (-1) \cos \theta+(0) \sin \theta \\
& & =-\cos \theta
\end{array}
$$

Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)	-	Any relevant first step, e.g. writes down correct expansion of $\cos (A-B)$ with some correct substitution $(A$ or $B)$.
High partial credit: (4 marks)	-	Expands $\cos \left(180^{\circ}-\theta\right)$ correctly and identifies $\cos 180^{\circ}=-1$ and $\sin 180^{\circ}=0$, but fails to finish or finishes incorrectly.

(v) Hence, or otherwise, find the value of h.

$$
\begin{aligned}
& \Rightarrow \quad \begin{aligned}
|\angle A B D|+|\angle D B C| & = & 180^{\circ} \\
\Rightarrow \quad|\angle A B D| & = & 180^{\circ}-|\angle D B C|
\end{aligned} \\
& \Rightarrow \cos |\angle A B D|=\cos \left(180^{\circ}-|\angle D B C|\right) \\
& \cos \left(180^{\circ}-\theta\right)=-\cos \theta \\
& \Rightarrow \cos |\angle A B D| \quad=\quad-\cos |\angle D B C| \\
& \Rightarrow \frac{63-h^{2}}{18 h} \quad=-\frac{1,575+2 h^{2}}{225 h} \\
& \Rightarrow \quad 225\left(63-h^{2}\right) \quad=\quad-18\left(1,575+2 h^{2}\right) \\
& \Rightarrow \quad 14,175-225 h^{2} \quad=\quad-28,350-36 h^{2} \\
& \Rightarrow \quad 225 h^{2}-36 h^{2} \quad=\quad 14,175+28,350 \\
& \Rightarrow \quad 189 h^{2} \quad=\quad 42,525 \\
& \Rightarrow \quad h^{2} \quad=\frac{42,525}{189} \\
& =225 \\
& \Rightarrow \quad h \quad=\quad \sqrt{225} \\
& =15 \mathrm{~m}
\end{aligned}
$$

** Accept students' answers for $\cos |\angle A B D|$ from part (a)(ii) if not oversimplified.
Scale 10D* (0, 4, 6, 8, 10) Low partial credit: (4 marks) - Any relevant first step, e.g. writes down

Low partial credit: (4 marks)	-	Any relevant first step, $e . g$. writes down $\|\angle A B D\|+\|\angle D B C\|=180^{\circ}$ or similar.
	-	Finds $\frac{63-h^{2}}{18 h}=\frac{1,575+2 h^{2}}{225 h}$ (incorrect
	sign) and stops or fails to progress.	

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units (' m ') - apply only once in each section (a), (b), (c), etc. of question.

9(b) Using your answer to part (a)(v), or otherwise, find the shortest distance from the foot of the tower, D, to the roadway $A B C$.

$$
\begin{aligned}
& |D B| \quad=\quad 5 h \quad \ldots \text { answer from part (a)(i) } \\
& h \quad=\quad 15 \quad \ldots \text { answer from part (a)(v) } \\
& \Rightarrow|D B| \quad=\quad 5(15) \\
& =75 \mathrm{~m} \\
& \text { Let }|D E|=\text { shortest distance (} \perp \text { distance) from } D \text { to } A C \\
& \cos |\angle D B E| \quad=\quad \cos |\angle D B C| \\
& =\frac{1,575+2 h^{2}}{225 h} \\
& \text {... given in part (a)(iii) } \\
& \Rightarrow \cos |\angle D B E|=\frac{1,575+2(15)^{2}}{225(15)} \\
& =\frac{1,575+450}{3,375} \\
& =\frac{2,025}{3,375} \\
& \begin{aligned}
& =\frac{3}{5} \\
\Rightarrow \sin |\angle D B E| & =\frac{4}{5}
\end{aligned} \\
& \sin |\angle D B E|=\frac{|D E|}{|D B|} \\
& =\frac{|D E|}{75} \\
& \Rightarrow \quad \frac{|D E|}{75} \\
& =\frac{4}{5} \\
& \Rightarrow \quad|D E| \\
& =\frac{4(75)}{5} \\
& =\frac{300}{5} \\
& =60 \mathrm{~m} \\
& \text { ** Accept students' answers for }|D B| \text { and } h \text { from parts (a)(i) and (a)(v) } \\
& \text { if not oversimplified. }
\end{aligned}
$$

Scale 10D* (0, 4, 6, 8, 10)

Low partial credit: (4 marks)	_	Any relevant first step, e.g. writes down shortest distance $=\perp$ distance from D to $A B C$ or similar. Finds correct value of $\|D B\|$ [ans. 75]. Some correct substitution of h value into $\cos \|\angle D B E\|=\frac{1,575+2 h^{2}}{225 h}$ and stops or fails to progress.
Mid partial credit: (6 marks)	-	Substitutes correctly into cos $\|\angle D B E\|$ $=\frac{1,575+2 h^{2}}{225 h}$ and finds $\cos \|\angle D B E\|=\frac{3}{5}$ and stops or fails to progress.
High partial credit: (8 marks)		Finds $\sin \|\angle D B E\|=\frac{4}{5}$ or $\frac{\|D E\|}{75}$, but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m') - apply only once in each section (a), (b), (c), etc. of question.

®EE $+\sqrt[B]{-2}$ exams

 www.debexams.ie...resourcing schools
 \title{
exam papers and solutions.
 \title{
exam papers and solutions.
 Register today on

 Download our past
}

 Download our past
}
www-debexams.ie Tel: (01) 6166262 Email: info@debexams.ie

