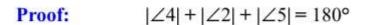
Theorem 4: The angles in any triangle add to 180°.

Given: Triangle with angles 1, 2 and 3.

To Prove: $|\angle 1| + |\angle 2| + |\angle 3| = 180^{\circ}$.

Construction: Draw line through $\angle 2$ parallel to the base.



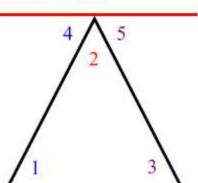
Straight line angle = 180°

$$|\angle 1| = |\angle 4|$$

$$|\angle 3| = |\angle 5|$$

Alternate angles

$$|\angle 1| + |\angle 2| + |\angle 3| = 180^{\circ}$$



Theorem 6: Each exterior angle of a triangle is equal to the sum

of the interior opposite angles.

Given: Triangle with angles 1, 2 and 3.

Construction: Extend base line and label ∠4.

To Prove: $|\angle 1| + |\angle 2| = |\angle 4|$.

Proof: $|\angle 1| + |\angle 2| + |\angle 3| = 180^{\circ}$

Angle sum of triangle = 180°

$$|\angle 3| + |\angle 4| = 180^{\circ}$$

Straight line angle = 180°

$$|\angle 1| + |\angle 2| = |\angle 4|$$

Theorem 9: In a parallelogram, opposite sides are equal and

opposite angles are equal.

Given: Parallelogram ABCD.

|AB| = |CD| and |AD| = |BC|To Prove:

 $|\angle ABC| = |\angle ADC|$

 $|\angle BAD| = |\angle BCD|$

Construction: Diagonal |AC|

Proof: Alternate angles $|\angle 1| = |\angle 4|$

> |AC| = |AC|Common

 $|\angle 2| = |\angle 3|$ Alternate angles

 $\therefore \Delta ABC \equiv \Delta ADCASA$

|AB| = |CD| and |AD| = |BC| Corresponding sides

B

 $\therefore |\angle ABC| = |\angle ADC|$ $\therefore |\angle ABC| = |\angle ADC|$ Corresponding angles

C

Theorem 19: The measure of the angle at the centre of the circle

is twice the measure of the angle at the circumference,

standing on the same arc.

Circle, centre O, containing the points A, B, and C. Given:

 $|\angle BOC| = 2 |\angle BAC|$. To Prove:

Construction: Join A to O and extend to D.

 $|\angle 1| = |\angle 2| + |\angle 3|$ Proof:

Exterior angle of triangle

|AO| = |BO| Radii of circle

 $|\angle 2| = |\angle 3|$ Base angles

 $|\angle 1| = 2 |\angle 2|$

Similarly $|\angle 4| = 2 |\angle 5|$

 $|\angle 1| + |\angle 4| = 2(|\angle 2| + |\angle 5|)$

 $|\angle BOC| = 2 |\angle BAC|$

