Exercise 2.6

- 1. An open rectangular box has dimensions 10 cm by 5 cm by 4 cm, as shown.
 - (i) Find the length of the diagonal [GH]. (ii) Find the measure of the angle between GH and the base of the box.

5cm

10cm

Ex 2.6 4cm

$$x^{2} = 10^{2} + 5^{2}$$

$$x^{2} = 125$$

$$x = \sqrt{125} = 5\sqrt{5}$$

$$x = \sqrt{141} = 1/.87$$

V141

5/5

10

6

3. A balloon X is 200 metres vertically above a point Y on level ground. Two points P and Q are also on level ground. The angle of elevation of X from P is 48°. The angle of elevation of X from Q is 34°. (i) Find PY and OY correct to the nearest metre. (ii) If $|\angle PYO| = 84^{\circ}$, find |PO| correct to the nearest metre. Tan 48 = 200 PY 200 200 - 200 Tan 48

 $x^{2} = 180^{2} + 297^{2} - 2(180)(297)G_{5}8$ $x^{2} = 120609 - 11176.18$

 $x^2 = 109432.82$ x = 331 m

180

297

p

(ii) Pal

200 m

5. P. Q and R are points on a horizontal plane.

[PD] is a vertical mast.

The angle of elevation of D from R is 60°.

If
$$|PQ| = 5 \text{ m, } |QR| = 3 \text{ m and } |\angle PQR| = 120°$$
,

find

(i) $|PR|$

(ii) $|DQ|$, corect to the nearest metre.

$$x^2 = 5 + 5^2 - 2(5)(5) Co_{5}(120)$$

$$x^2 = 34 - (-15)$$

$$x^2 = 49$$

$$x = 149 = 7 \text{ m}$$

(ii) $|DQ|$

(iii) $|DQ|$

(iv) $|DQ|$

Aren of 1 = 1.5x2.94 = 4.4/m2

115 = 4.41 x4 = 17.6 m2

 $10.89 - 2.25 = x^2$ $8.64 = x^2$

x = 18.64 = 2.94 m

2x

 $64 = x^2$ 8 = x

find disyonal of base.

10. The given diagram shows two walls of length 10 metres and 5 metres meeting at right angles. The height of each wall is 4 metres.

Calculate the distance between the points A and B on the walls. Give your answer in metres, correct to one decimal place.

metres in height.

From a point O on level ground, the angle of elevation from O to U is
$$60^{\circ}$$
 and the angle of elevation of T from O is 30° .

If $|\angle SOV| = 60^{\circ}$, find the length of the wall [SV] in metres, correct to 1 place of decimals.

11. The given figure shows a vertical wall TUVS four

DC

10 12

u

DC

6.1

Tan 60 = x

20 = 2.31

4 m

4m

6m

(i) Calculate the length of the railway [AT], correct to the nearest metre.

A footpath goes straight from B to T, where $|AB| = 300 \,\text{m}$

(ii) Calculate the length of the footpath [BT].

The straight road CT has a 'gradient of 1 in 5', meaning that it rises one metre vertically for every five metres travelled **along the road**.

- (iii) Find the length of the road [CT].
- (iv) Find |BC|, correct to the nearest metre.

14. In the given diagram, a pole [EA] supports an inn sign. The pole is perpendicular to a vertical wall and is supported by two wires [AB] and [AC]. The hooks at B and C are in a horizontal line and D is 120 per vertically above. F.

D is 120 cm vertically above E.

(i) Calculate the length of [DA].

- (ii) Calculate the length of each wire, correct to the nearest centimetre.
 (iii) Find the angle that the wire AB makes with the control of the co
- (iii) Find the angle that the wire AB makes with the wall, correct to the nearest degree.

